Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Photon
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Quantum optics and computation == Much research has been devoted to applications of photons in the field of [[quantum optics]]. Photons seem well-suited to be elements of an extremely fast [[quantum computer]], and the [[quantum entanglement]] of photons is a focus of research. [[Nonlinear optics|Nonlinear optical processes]] are another active research area, with topics such as [[two-photon absorption]], [[self-phase modulation]], [[modulational instability]] and [[optical parametric oscillator]]s. However, such processes generally do not require the assumption of photons ''per se''; they may often be modeled by treating atoms as nonlinear oscillators. The nonlinear process of [[spontaneous parametric down conversion]] is often used to produce single-photon states. Finally, photons are essential in some aspects of [[optical communication]], especially for [[quantum cryptography]].<ref> Introductory-level material on the various sub-fields of quantum optics can be found in {{cite book |last=Fox |first=M. |url={{google books |id=Q-4dIthPuL4C |plainurl=y}} |title=Quantum Optics: An introduction |publisher=Oxford University Press |year=2006 |isbn=978-0-19-856673-1 |via=Google Books}} </ref> [[Two-photon physics]] studies interactions between photons, which are rare. In 2018, Massachusetts Institute of Technology researchers announced the discovery of bound photon triplets, which may involve [[polariton]]s.<ref name="NW-20180216">{{cite news |last=Hignett |first=Katherine |date=16 February 2018 |title=Physics creates new form of light that could drive the quantum computing revolution |magazine=[[Newsweek]] |url=http://www.newsweek.com/photons-light-physics-808862 |access-date=17 February 2018 |archive-date=25 April 2021 |archive-url=https://web.archive.org/web/20210425041617/https://www.newsweek.com/photons-light-physics-808862 |url-status=live }}</ref><ref name="SCI-20180216">{{cite journal |last1=Liang |first1=Qi-Yu |display-authors=etal |date=16 February 2018 |title=Observation of three-photon bound states in a quantum nonlinear medium |journal=[[Science (journal)|Science]] |volume=359 |issue=6377 |pages=783β786 |doi=10.1126/science.aao7293 |pmid=29449489 |pmc=6467536 |arxiv=1709.01478 |bibcode=2018Sci...359..783L }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Photon
(section)
Add topic