Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Nanotechnology
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== [[File:Threshold formation nowatermark.gif|thumb|right|upright=1.8|One of the major applications of nanotechnology is in the area of [[nanoelectronics]] with [[MOSFET]]'s being made of small [[nanowire]]s ≈10 nm in length. Here is a simulation of such a nanowire.]] [[File:A-simple-and-fast-fabrication-of-a-both-self-cleanable-and-deep-UV-antireflective-quartz-1556-276X-7-430-S1.ogv|thumb|Nanostructures provide this surface with [[superhydrophobicity]], which lets [[water droplet]]s roll down the [[inclined plane]].]] [[File:Nanowire laser.png|thumb|Nanowire lasers for ultrafast transmission of information in light pulses]]{{Update section|date=May 2024}}{{Main|List of nanotechnology applications}} As of August 21, 2008, the [[Project on Emerging Nanotechnologies]] estimated that over 800 manufacturer-identified nanotech products were publicly available, with new ones hitting the market at a pace of 3–4 per week.<ref name="emergingnano"/> Most applications are "first generation" passive nanomaterials that includes titanium dioxide in sunscreen, cosmetics, surface coatings,<ref>{{cite journal| vauthors = Kurtoglu ME, Longenbach T, Reddington P, Gogotsi Y |year=2011|title=Effect of Calcination Temperature and Environment on Photocatalytic and Mechanical Properties of Ultrathin Sol–Gel Titanium Dioxide Films|journal=Journal of the American Ceramic Society|volume=94|issue=4|pages=1101–8|doi=10.1111/j.1551-2916.2010.04218.x}}</ref> and some food products; Carbon allotropes used to produce [[gecko tape]]; silver in [[food packaging]], clothing, disinfectants, and household appliances; zinc oxide in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide as a fuel catalyst.<ref name="americanelements"/> In the electric car industry, single wall carbon nanotubes (SWCNTs) address key [[lithium-ion battery]] challenges, including energy density, charge rate, service life, and cost. SWCNTs connect electrode particles during charge/discharge process, preventing battery premature degradation. Their exceptional ability to wrap active material particles enhanced electrical conductivity and physical properties, setting them apart multi-walled carbon nanotubes and carbon black.<ref>{{cite journal | vauthors = Guo M, Cao Z, Liu Y, Ni Y, Chen X, Terrones M, Wang Y | title = Preparation of Tough, Binder-Free, and Self-Supporting LiFePO<sub>4</sub> Cathode by Using Mono-Dispersed Ultra-Long Single-Walled Carbon Nanotubes for High-Rate Performance Li-Ion Battery | journal = Advanced Science | volume = 10 | issue = 13 | pages = e2207355 | date = May 2023 | pmid = 36905241 | pmc = 10161069 | doi = 10.1002/advs.202207355 }}</ref><ref>{{Cite journal | vauthors = Jimenez NP, Balogh MP, Halalay IC |date= April 2021 |title=High Porosity Single-Phase Silicon Negative Electrode Made with Phase-Inversion |journal=Journal of the Electrochemical Society |volume=168 |issue=4 |pages=040507 |doi=10.1149/1945-7111/abe3f1 |issn=0013-4651|doi-access=free |bibcode= 2021JElS..168d0507J }}</ref><ref>{{Cite web |title=Single wall CNT cells: high energy density anodes & cathodes | publisher = OCSiAl |url=https://tuball.com/nanotubes-in/li-ion-batteries |access-date=2024-07-02 | work = tuball.com |language=en}}</ref> Further applications allow [[tennis ball]]s to last longer, [[golf ball]]s to fly straighter, and [[bowling ball]]s to become more durable. [[Trouser]]s and [[socks]] have been infused with nanotechnology to last longer and lower temperature in the summer. [[Bandage]]s are infused with silver nanoparticles to heal cuts faster.<ref name="nnin">{{cite web|url=http://www.nnin.org/nnin_nanoproducts.html|title=Nanotechnology Consumer Products|work=National Nanotechnology Infrastructure Network |year=2010|access-date=November 23, 2011|url-status=live|archive-url=https://web.archive.org/web/20120119092143/http://www.nnin.org/nnin_nanoproducts.html|archive-date=January 19, 2012 }}</ref> [[Video game console]]s and [[personal computer]]s may become cheaper, faster, and contain more memory thanks to nanotechnology.<ref>{{cite web|url=http://www.nanoandme.org/nano-products/computing-and-electronics|title=Nano in computing and electronics|archive-url=https://web.archive.org/web/20111114034926/http://www.nanoandme.org/nano-products/computing-and-electronics/|archive-date=2011-11-14|website=NanoandMe.org}}</ref> Also, to build structures for on chip computing with light, for example on chip optical quantum information processing, and picosecond transmission of information.<ref>{{cite journal | vauthors = Mayer B, Janker L, Loitsch B, Treu J, Kostenbader T, Lichtmannecker S, Reichert T, Morkötter S, Kaniber M, Abstreiter G, Gies C, Koblmüller G, Finley JJ | title = Monolithically Integrated High-β Nanowire Lasers on Silicon | journal = Nano Letters | volume = 16 | issue = 1 | pages = 152–156 | date = January 2016 | pmid = 26618638 | doi = 10.1021/acs.nanolett.5b03404 | bibcode = 2016NanoL..16..152M }}</ref> Nanotechnology may have the ability to make existing medical applications cheaper and easier to use in places like the doctors' offices and at homes.<ref>{{cite web|url=http://www.nanoandme.org/nano-products/medical|title=Nano in medicine|archive-url=https://web.archive.org/web/20111114035018/http://www.nanoandme.org/nano-products/medical/|archive-date=2011-11-14|website=NanoandMe.org}}</ref> Cars use [[nanomaterial]]s in such ways that car parts require fewer [[metal]]s during manufacturing and less [[fuel]] to operate in the future.<ref>{{cite web|url=http://www.nanoandme.org/nano-products/transport/|title=Nano in transport|archive-url=https://web.archive.org/web/20111029130940/http://www.nanoandme.org/nano-products/transport/|archive-date=2011-10-29|website=NanoandMe.org}}</ref> Nanoencapsulation involves the enclosure of active substances within carriers. Typically, these carriers offer advantages, such as enhanced bioavailability, controlled release, targeted delivery, and protection of the encapsulated substances. In the medical field, nanoencapsulation plays a significant role in [[drug delivery]]. It facilitates more efficient drug administration, reduces side effects, and increases treatment effectiveness. Nanoencapsulation is particularly useful for improving the bioavailability of poorly water-soluble drugs, enabling controlled and sustained drug release, and supporting the development of targeted therapies. These features collectively contribute to advancements in medical treatments and patient care.<ref>{{cite journal | vauthors = Kumari A, Singla R, Guliani A, Yadav SK | title = Nanoencapsulation for drug delivery | journal = EXCLI Journal | volume = 13 | pages = 265–286 | date = March 2014 | pmid = 26417260 | pmc = 4464443 }}</ref><ref>{{Cite web | vauthors = Suganya V, Anuradha V |date=March 2017 |title=Microencapsulation and Nanoencapsulation: A Review |url=https://www.researchgate.net/publication/318501373 |access-date=28 October 2023 |website=ResearchGate}}</ref> Nanotechnology may play role in [[Tissue Engineering|tissue engineering]]. When designing scaffolds, researchers attempt to mimic the nanoscale features of a [[Cell (biology)|cell]]'s microenvironment to direct its differentiation down a suitable lineage.<ref>{{cite journal | vauthors = Cassidy JW | title = Nanotechnology in the Regeneration of Complex Tissues | journal = Bone and Tissue Regeneration Insights | volume = 5 | pages = 25–35 | date = November 2014 | pmid = 26097381 | pmc = 4471123 | doi = 10.4137/BTRI.S12331 }}</ref> For example, when creating scaffolds to support bone growth, researchers may mimic [[osteoclast]] resorption pits.<ref>{{cite journal | vauthors = Cassidy JW, Roberts JN, Smith CA, Robertson M, White K, Biggs MJ, Oreffo RO, Dalby MJ | title = Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces: the role of focal adhesion maturation | journal = Acta Biomaterialia | volume = 10 | issue = 2 | pages = 651–660 | date = February 2014 | pmid = 24252447 | pmc = 3907683 | doi = 10.1016/j.actbio.2013.11.008 | url = http://eprints.soton.ac.uk/367171/ | url-status = live | archive-url = https://web.archive.org/web/20170830234634/https://eprints.soton.ac.uk/367171/ | author-link8 = Matthew Dalby | archive-date = 2017-08-30 }}</ref> Researchers used [[DNA origami]]-based nanobots capable of carrying out logic functions to target drug delivery in cockroaches.<ref>{{cite journal | vauthors = Amir Y, Ben-Ishay E, Levner D, Ittah S, Abu-Horowitz A, Bachelet I | title = Universal computing by DNA origami robots in a living animal | journal = Nature Nanotechnology | volume = 9 | issue = 5 | pages = 353–357 | date = May 2014 | pmid = 24705510 | pmc = 4012984 | doi = 10.1038/nnano.2014.58 | bibcode = 2014NatNa...9..353A }}</ref> A nano bible (a .5mm2 silicon chip) was created by the [[Technion – Israel Institute of Technology|Technion]] in order to increase youth interest in nanotechnology.<ref>{{Cite web |date=2015-11-04 |title=Technion Nano Bible, world's smallest, displayed at Smithsonian |url=https://www.jpost.com/business-and-innovation/tech/technion-nano-bible-worlds-smallest-displayed-at-smithsonian-432038 |access-date=2024-06-25 |website=The Jerusalem Post {{!}} JPost.com |language=en}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Nanotechnology
(section)
Add topic