Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Markov chain
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Convergence speed to the stationary distribution==== As stated earlier, from the equation <math>\boldsymbol{\pi} = \boldsymbol{\pi} \mathbf{P},</math> (if exists) the stationary (or steady state) distribution '''{{pi}}''' is a left eigenvector of row [[stochastic matrix]] '''P'''. Then assuming that '''P''' is diagonalizable or equivalently that '''P''' has ''n'' linearly independent eigenvectors, speed of convergence is elaborated as follows. (For non-diagonalizable, that is, [[defective matrix|defective matrices]], one may start with the [[Jordan normal form]] of '''P''' and proceed with a bit more involved set of arguments in a similar way.<ref>{{cite journal |last1=Schmitt |first1=Florian |last2=Rothlauf |first2=Franz |title=On the Importance of the Second Largest Eigenvalue on the Convergence Rate of Genetic Algorithms |journal=Proceedings of the 14th Symposium on Reliable Distributed Systems |date=2001 |citeseerx=10.1.1.28.6191 }}</ref>) Let '''U''' be the matrix of eigenvectors (each normalized to having an L2 norm equal to 1) where each column is a left eigenvector of '''P''' and let '''Σ''' be the diagonal matrix of left eigenvalues of '''P''', that is, '''Σ''' = diag(''λ''<sub>1</sub>,''λ''<sub>2</sub>,''λ''<sub>3</sub>,...,''λ''<sub>''n''</sub>). Then by [[eigendecomposition]] :<math> \mathbf{P} = \mathbf{U\Sigma U}^{-1} .</math> Let the eigenvalues be enumerated such that: :<math> 1 = |\lambda_1 |> |\lambda_2 | \geq |\lambda_3 | \geq \cdots \geq |\lambda_n|.</math> Since '''P''' is a row stochastic matrix, its largest left eigenvalue is 1. If there is a unique stationary distribution, then the largest eigenvalue and the corresponding eigenvector is unique too (because there is no other '''{{pi}}''' which solves the stationary distribution equation above). Let '''u'''<sub>''i''</sub> be the ''i''-th column of '''U''' matrix, that is, '''u'''<sub>''i''</sub> is the left eigenvector of '''P''' corresponding to λ<sub>''i''</sub>. Also let '''x''' be a length ''n'' row vector that represents a valid probability distribution; since the eigenvectors '''u'''<sub>''i''</sub> span <math>\R^n,</math> we can write :<math> \mathbf{x}^\mathsf{T} = \sum_{i=1}^n a_i \mathbf{u}_i, \qquad a_i \in \R.</math> If we multiply '''x''' with '''P''' from right and continue this operation with the results, in the end we get the stationary distribution '''{{pi}}'''. In other words, '''{{pi}}''' = '''a'''<sub>1</sub> '''u'''<sub>1</sub> ← '''xPP'''...'''P''' = '''xP'''<sup>''k''</sup> as ''k'' → ∞. That means :<math>\begin{align} \boldsymbol{\pi}^{(k)} &= \mathbf{x} \left (\mathbf{U\Sigma U}^{-1} \right ) \left (\mathbf{U\Sigma U}^{-1} \right )\cdots \left (\mathbf{U\Sigma U}^{-1} \right ) \\ &= \mathbf{xU\Sigma}^k \mathbf{U}^{-1} \\ &= \left (a_1\mathbf{u}_1^\mathsf{T} + a_2\mathbf{u}_2^\mathsf{T} + \cdots + a_n\mathbf{u}_n^\mathsf{T} \right )\mathbf{U\Sigma}^k\mathbf{U}^{-1} \\ &= a_1\lambda_1^k\mathbf{u}_1^\mathsf{T} + a_2\lambda_2^k\mathbf{u}_2^\mathsf{T} + \cdots + a_n\lambda_n^k\mathbf{u}_n^\mathsf{T} && u_i \bot u_j \text{ for } i\neq j \\ & = \lambda_1^k\left\{a_1\mathbf{u}_1^\mathsf{T} + a_2\left(\frac{\lambda_2}{\lambda_1}\right)^k\mathbf{u}_2^\mathsf{T} + a_3\left(\frac{\lambda_3}{\lambda_1}\right)^k\mathbf{u}_3^\mathsf{T} + \cdots + a_n\left(\frac{\lambda_n}{\lambda_1}\right)^k\mathbf{u}_n^\mathsf{T}\right\} \end{align}</math> Since '''{{pi}}''' is parallel to '''u'''<sub>1</sub>(normalized by L2 norm) and '''{{pi}}'''<sup>(''k'')</sup> is a probability vector, '''{{pi}}'''<sup>(''k'')</sup> approaches to '''a'''<sub>1</sub> '''u'''<sub>1</sub> = '''{{pi}}''' as ''k'' → ∞ with a speed in the order of ''λ''<sub>2</sub>/''λ''<sub>1</sub> exponentially. This follows because <math> |\lambda_2| \geq \cdots \geq |\lambda_n|,</math> hence ''λ''<sub>2</sub>/''λ''<sub>1</sub> is the dominant term. The smaller the ratio is, the faster the convergence is.<ref>{{Cite journal | volume = 37 | issue = 3| pages = 387–405| last = Rosenthal| first = Jeffrey S.| title = Convergence Rates for Markov Chains| journal = SIAM Review| accessdate = 2021-05-31| date = 1995| doi = 10.1137/1037083| url = https://www.jstor.org/stable/2132659| jstor = 2132659}}</ref> Random noise in the state distribution '''{{pi}}''' can also speed up this convergence to the stationary distribution.<ref>{{cite journal|last=Franzke|first=Brandon|author2=Kosko, Bart|date=1 October 2011|title=Noise can speed convergence in Markov chains|journal=Physical Review E|volume=84|issue=4|pages=041112|bibcode=2011PhRvE..84d1112F|doi=10.1103/PhysRevE.84.041112|pmid=22181092}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Markov chain
(section)
Add topic