Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Latitude
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Conformal latitude=== The '''conformal latitude''', {{mvar|χ}}, gives an angle-preserving ([[Conformal map|conformal]]) transformation to the sphere. <ref>{{cite book |first=Joseph-Louis |last=Lagrange |author-link= Joseph-Louis Lagrange |year=1779 |title=Oevres |volume=IV |chapter=Sur la Construction des Cartes Géographiques |page=667 |language=fr |chapter-url=https://archive.org/details/oeuvresdelagrang04lagr/page/663 }}</ref> :<math>\begin{align} \chi(\phi) &= 2\tan^{-1}\left[ \left(\frac{1 + \sin\phi}{1 - \sin\phi}\right) \left(\frac{1 - e\sin\phi}{1 + e\sin\phi}\right)^e\right ]^\frac{1}{2} - \frac{\pi}{2} \\[2pt] &= 2\tan^{-1}\left[ \tan\left(\frac{\phi}{2} + \frac{\pi}{4}\right) \left(\frac{1 - e\sin\phi}{1 + e\sin\phi}\right)^\frac{e}{2} \right] - \frac{\pi}{2} \\[2pt] &= \tan^{-1}\left[\sinh\left(\sinh^{-1}(\tan\phi) - e\tanh^{-1}(e\sin\phi)\right)\right] \\ &= \operatorname{gd}\left[\operatorname{gd}^{-1}(\phi) - e\tanh^{-1}(e\sin\phi)\right] \end{align}</math> where {{math|gd(''x'')}} is the [[Gudermannian function]]. (See also [[Mercator projection#Alternative expressions|Mercator projection]].) The conformal latitude defines a transformation from the ellipsoid to a sphere of ''arbitrary'' radius such that the angle of intersection between any two lines on the ellipsoid is the same as the corresponding angle on the sphere (so that the shape of ''small'' elements is well preserved). A further conformal transformation from the sphere to the plane gives a conformal double projection from the ellipsoid to the plane. This is not the only way of generating such a conformal projection. For example, the 'exact' version of the [[Transverse Mercator projection]] on the ellipsoid is not a double projection. (It does, however, involve a generalisation of the conformal latitude to the complex plane).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Latitude
(section)
Add topic