Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kalman filter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sensitivity analysis == {{More citations needed section|date=December 2010}} The Kalman filtering equations provide an estimate of the state <math>\hat{\mathbf{x}}_{k\mid k}</math> and its error covariance <math>\mathbf{P}_{k\mid k}</math> recursively. The estimate and its quality depend on the system parameters and the noise statistics fed as inputs to the estimator. This section analyzes the effect of uncertainties in the statistical inputs to the filter.<ref name=anderson>{{cite book|last1= Anderson|first1= Brian D. O.|last2=Moore|first2=John B.|year=1979 |title=Optimal Filtering |publisher=[[Prentice Hall]]|place=New York|pages=129β133|isbn= 978-0-13-638122-8}}</ref> In the absence of reliable statistics or the true values of noise covariance matrices <math>\mathbf{Q}_{k}</math> and <math>\mathbf{R}_k</math>, the expression :<math>\mathbf{P}_{k\mid k} = \left(\mathbf{I} - \mathbf{K}_k\mathbf{H}_k\right)\mathbf{P}_{k\mid k-1}\left(\mathbf{I} - \mathbf{K}_k\mathbf{H}_k\right)^\textsf{T} + \mathbf{K}_k\mathbf{R}_k\mathbf{K}_k^\textsf{T}</math> no longer provides the actual error covariance. In other words, <math>\mathbf{P}_{k \mid k} \neq E\left[\left(\mathbf{x}_k - \hat{\mathbf{x}}_{k\mid k}\right)\left(\mathbf{x}_k - \hat{\mathbf{x}}_{k \mid k}\right)^\textsf{T}\right]</math>. In most real-time applications, the covariance matrices that are used in designing the Kalman filter are different from the actual (true) noise covariances matrices.{{citation needed|date=December 2010}} This sensitivity analysis describes the behavior of the estimation error covariance when the noise covariances as well as the system matrices <math>\mathbf{F}_k</math> and <math>\mathbf{H}_k</math> that are fed as inputs to the filter are incorrect. Thus, the sensitivity analysis describes the robustness (or sensitivity) of the estimator to misspecified statistical and parametric inputs to the estimator. This discussion is limited to the error sensitivity analysis for the case of statistical uncertainties. Here the actual noise covariances are denoted by <math>\mathbf{Q}^a_k</math> and <math>\mathbf{R}^a_k</math> respectively, whereas the design values used in the estimator are <math>\mathbf{Q}_k</math> and <math>\mathbf{R}_k</math> respectively. The actual error covariance is denoted by <math>\mathbf{P}_{k \mid k}^a</math> and <math>\mathbf{P}_{k \mid k}</math> as computed by the Kalman filter is referred to as the Riccati variable. When <math>\mathbf{Q}_k \equiv \mathbf{Q}^a_k</math> and <math>\mathbf{R}_k \equiv \mathbf{R}^a_k</math>, this means that <math>\mathbf{P}_{k \mid k} = \mathbf{P}_{k \mid k}^a</math>. While computing the actual error covariance using <math>\mathbf{P}_{k \mid k}^a = E\left[\left(\mathbf{x}_k - \hat{\mathbf{x}}_{k \mid k}\right)\left(\mathbf{x}_k - \hat{\mathbf{x}}_{k \mid k}\right)^\textsf{T}\right] </math>, substituting for <math>\widehat{\mathbf{x}}_{k \mid k}</math> and using the fact that <math>E\left[\mathbf{w}_k\mathbf{w}_k^\textsf{T}\right] = \mathbf{Q}_k^a</math> and <math>E\left[\mathbf{v}_k \mathbf{v}_k^\textsf{T}\right] = \mathbf{R}_k^a</math>, results in the following recursive equations for <math>\mathbf{P}_{k \mid k}^a</math> : :<math>\mathbf{P}_{k \mid k-1}^a = \mathbf{F}_k\mathbf{P}_{k-1 \mid k-1}^a \mathbf{F}_k^\textsf{T} + \mathbf{Q}_k^a </math> and :<math>\mathbf{P}_{k \mid k}^a = \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right)\mathbf{P}_{k \mid k-1}^a \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right)^\textsf{T} + \mathbf{K}_k \mathbf{R}_k^a \mathbf{K}_k^\textsf{T}</math> While computing <math>\mathbf{P}_{k \mid k}</math>, by design the filter implicitly assumes that <math>E\left[\mathbf{w}_k \mathbf{w}_k^\textsf{T}\right] = \mathbf{Q}_k</math> and <math>E\left[\mathbf{v}_k \mathbf{v}_k^\textsf{T}\right] = \mathbf{R}_k</math>. The recursive expressions for <math>\mathbf{P}_{k \mid k}^a</math> and <math>\mathbf{P}_{k \mid k}</math> are identical except for the presence of <math>\mathbf{Q}_k^a</math> and <math>\mathbf{R}_k^a</math> in place of the design values <math>\mathbf{Q}_k</math> and <math>\mathbf{R}_k</math> respectively. Researches have been done to analyze Kalman filter system's robustness.<ref>Jingyang Lu. [https://web.archive.org/web/20200224230739/https://ieeexplore.ieee.org/document/6916211, "False information injection attack on dynamic state estimation in multi-sensor systems"], Fusion 2014</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kalman filter
(section)
Add topic