Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Huffman coding
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== {{anchor|Hu-Tucker coding|Alphabetic Huffman coding|Alphabetic Huffman tree}}Optimal alphabetic binary trees (Hu–Tucker coding) === In the standard Huffman coding problem, it is assumed that any codeword can correspond to any input symbol. In the alphabetic version, the alphabetic order of inputs and outputs must be identical. Thus, for example, <math>A = \left\{a,b,c\right\}</math> could not be assigned code <math>H\left(A,C\right) = \left\{00,1,01\right\}</math>, but instead should be assigned either <math>H\left(A,C\right) =\left\{00,01,1\right\}</math> or <math>H\left(A,C\right) = \left\{0,10,11\right\}</math>. This is also known as the '''Hu–Tucker''' problem, after [[T. C. Hu]] and [[Alan Tucker]], the authors of the paper presenting the first [[Time complexity#Quasilinear time|<math>O(n\log n)</math>-time]] solution to this optimal binary alphabetic problem,<ref>{{Cite journal | doi = 10.1137/0121057| title = Optimal Computer Search Trees and Variable-Length Alphabetical Codes| journal = SIAM Journal on Applied Mathematics| volume = 21| issue = 4| pages = 514| year = 1971| last1 = Hu | first1 = T. C.|author1-link=T. C. Hu |last2 = Tucker | first2 = A. C. | author2-link = Alan Tucker| jstor = 2099603}}</ref> which has some similarities to Huffman algorithm, but is not a variation of this algorithm. A later method, the [[Garsia–Wachs algorithm]] of [[Adriano Garsia]] and [[Michelle L. Wachs]] (1977), uses simpler logic to perform the same comparisons in the same total time bound. These optimal alphabetic binary trees are often used as [[binary search tree]]s.<ref>{{citation | last = Knuth | first = Donald E. | author-link = Donald Knuth | contribution = Algorithm G (Garsia–Wachs algorithm for optimum binary trees) | edition = 2nd | pages = 451–453 | publisher = Addison–Wesley | title = The Art of Computer Programming, Vol. 3: Sorting and Searching | year = 1998}}. See also History and bibliography, pp. 453–454.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Huffman coding
(section)
Add topic