Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
General topology
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Defining topologies via continuous functions=== Given a function :<math>f\colon X \rightarrow S, \,</math> where ''X'' is a topological space and ''S'' is a set (without a specified topology), the [[final topology]] on ''S'' is defined by letting the open sets of ''S'' be those subsets ''A'' of ''S'' for which ''f''<sup>β1</sup>(''A'') is open in ''X''. If ''S'' has an existing topology, ''f'' is continuous with respect to this topology if and only if the existing topology is [[Comparison of topologies|coarser]] than the final topology on ''S''. Thus the final topology can be characterized as the finest topology on ''S'' that makes ''f'' continuous. If ''f'' is [[surjective]], this topology is canonically identified with the [[quotient topology]] under the [[equivalence relation]] defined by ''f''. Dually, for a function ''f'' from a set ''S'' to a topological space ''X'', the [[initial topology]] on ''S'' has a basis of open sets given by those sets of the form ''f''<sup>β1</sup>(''U'') where ''U'' is open in ''X'' . If ''S'' has an existing topology, ''f'' is continuous with respect to this topology if and only if the existing topology is finer than the initial topology on ''S''. Thus the initial topology can be characterized as the coarsest topology on ''S'' that makes ''f'' continuous. If ''f'' is injective, this topology is canonically identified with the [[subspace topology]] of ''S'', viewed as a subset of ''X''. A topology on a set ''S'' is uniquely determined by the class of all continuous functions <math>S \rightarrow X</math> into all topological spaces ''X''. [[Duality (mathematics)|Dually]], a similar idea can be applied to maps <math>X \rightarrow S.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
General topology
(section)
Add topic