Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fresnel equations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== ''s'' components === For the ''s'' polarization, the {{math|'''E'''}} field is parallel to the {{math|''z''}} axis and may therefore be described by its component in the {{math|''z''}} direction. Let the reflection and transmission coefficients be {{math|''r''<sub>s</sub>}} and {{math|''t''<sub>s</sub>}}, respectively. Then, if the incident {{math|'''E'''}} field is taken to have unit amplitude, the phasor form ({{EquationNote|3}}) of its {{math|''z''}}-component is {{NumBlk|:|<math>E_\text{i}=e^{i\mathbf{k}_\text{i}\mathbf{\cdot r}},</math>|{{EquationRef|8}}}} and the reflected and transmitted fields, in the same form, are {{NumBlk|:|<math>\begin{align} E_\text{r} &= r_{s\,} e^{i\mathbf{k}_\text{r}\mathbf{\cdot r}}\\ E_\text{t} &= t_{s\,} e^{i\mathbf{k}_\text{t}\mathbf{\cdot r}}. \end{align}</math>|{{EquationRef|9}}}} Under the sign convention used in this article, a positive reflection or transmission coefficient is one that preserves the direction of the ''transverse'' field, meaning (in this context) the field normal to the plane of incidence. For the ''s'' polarization, that means the {{math|'''E'''}} field. If the incident, reflected, and transmitted {{math|'''E'''}} fields (in the above equations) are in the {{math|''z''}}-direction ("out of the page"), then the respective {{math|'''H'''}} fields are in the directions of the red arrows, since {{math|'''k''', '''E''', '''H'''}} form a right-handed orthogonal triad. The {{math|'''H'''}} fields may therefore be described by their components in the directions of those arrows, denoted by {{math|''H''<sub>i</sub>, ''H''<sub>r</sub>, ''H''<sub>t</sub>}}. Then, since {{math|''H'' {{=}} ''YE''}}, {{NumBlk|:|<math>\begin{align} H_\text{i} &=\, Y_1 e^{i\mathbf{k}_\text{i}\mathbf{\cdot r}}\\ H_\text{r} &=\, Y_1 r_{s\,} e^{i\mathbf{k}_\text{r}\mathbf{\cdot r}}\\ H_\text{t} &=\, Y_2 t_{s\,} e^{i\mathbf{k}_\text{t}\mathbf{\cdot r}}. \end{align}</math>|{{EquationRef|10}}}} At the interface, by the usual [[interface conditions for electromagnetic fields]], the tangential components of the {{math|'''E'''}} and {{math|'''H'''}} fields must be continuous; that is, {{NumBlk|:|<math>\left.\begin{align} E_\text{i} + E_\text{r} &= E_\text{t}\\ H_\text{i}\cos\theta_\text{i} - H_\text{r}\cos\theta_\text{i} &= H_\text{t}\cos\theta_\text{t} \end{align}~~\right\}~~~\text{at}~~ y=0\,.</math>|{{EquationRef|11}}}} When we substitute from equations ({{EquationNote|8}}) to ({{EquationNote|10}}) and then from ({{EquationNote|7}}), the exponential factors cancel out, so that the interface conditions reduce to the simultaneous equations {{NumBlk|:|<math>\begin{align} 1 + r_\text{s} &=\, t_\text{s}\\ Y_1\cos\theta_\text{i} - Y_1 r_\text{s}\cos\theta_\text{i} &=\, Y_2 t_\text{s}\cos\theta_\text{t} \,, \end{align}</math>|{{EquationRef|12}}}} which are easily solved for {{math|''r''<sub>s</sub>}} and {{math|''t''<sub>s</sub>}}, yielding {{NumBlk|:|<math>r_\text{s}=\frac{Y_1\cos\theta_\text{i}-Y_2\cos\theta_\text{t}}{Y_1\cos\theta_\text{i}+Y_2\cos\theta_\text{t}}</math>|{{EquationRef|13}}}} and {{NumBlk|:|<math>t_\text{s}=\frac{2Y_1\cos\theta_\text{i}}{Y_1\cos\theta_\text{i}+Y_2\cos\theta_\text{t}}\,.</math>|{{EquationRef|14}}}} At ''normal incidence'' {{math|(''ΞΈ''<sub>i</sub> {{=}} ''ΞΈ''<sub>t</sub> {{=}} 0)}}, indicated by an additional subscript 0, these results become {{NumBlk|:|<math>r_\text{s0}=\frac{Y_1-Y_2}{Y_1+Y_2}</math>|{{EquationRef|15}}}} and {{NumBlk|:|<math>t_\text{s0}=\frac{2Y_1}{Y_1+Y_2}\,.</math>|{{EquationRef|16}}}} At ''grazing incidence'' {{math|(''ΞΈ''<sub>i</sub> β 90Β°)}}, we have {{math|cos{{tsp}}''ΞΈ''<sub>i</sub> β 0}}, hence {{math|''r''<sub>s</sub> β β1}} and {{math|''t''<sub>s</sub> β 0}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fresnel equations
(section)
Add topic