Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Formic acid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Uses == ===Agriculture=== A major use of formic acid is as a [[preservative]] and [[bacteria|antibacterial]] agent in livestock feed. It arrests certain decay processes and causes the feed to retain its nutritive value longer, In Europe, it is applied on [[silage]], including fresh hay, to promote the fermentation of [[lactic acid]] and to suppress the formation of [[butyric acid]]; it also allows fermentation to occur quickly, and at a lower temperature, reducing the loss of nutritional value.<ref name = Ullmann_2009/> It is widely used to preserve winter feed for [[cattle]],<ref>[https://books.google.com/books?id=7IrGwQTt1aMC&dq=formic+acid++winter+feed+for+cattle&pg=PA31 Organic Acids and Food Preservation], Maria M. Theron, J. F. Rykers Lues</ref> and is sometimes added to [[poultry]] feed to kill ''[[Escherichia coli|E. coli]]'' bacteria.<ref>{{cite journal |doi=10.1093/japr/14.4.750 |title=Alternatives to Antibiotics for Organic Poultry Production |journal=The Journal of Applied Poultry Research |volume=14 |issue=4 |pages=750 |year=2005 |last1=Griggs |first1=J. P |last2=Jacob |first2=J. P |doi-access=free }}</ref><ref>{{cite journal |doi=10.3382/japr.2006-00116 |title=Effect of Formic Acid and Plant Extracts on Growth, Nutrient Digestibility, Intestine Mucosa Morphology, and Meat Yield of Broilers |journal=The Journal of Applied Poultry Research |volume=16 |issue=4 |pages=555 |year=2007 |last1=Garcia |first1=V |last2=Catala-Gregori |first2=P |last3=Hernandez |first3=F |last4=Megias |first4=M. D |last5=Madrid |first5=J |doi-access=free }}</ref> Use as a preservative for silage and other animal feed constituted 30% of the global consumption in 2009.<ref name=CEH/> [[Beekeeper]]s use formic acid as a [[miticide]] against the tracheal mite (''[[Acarapis woodi]]'') and the [[Varroa destructor|''Varroa destructor'' mite]] and [[Varroa jacobsoni|''Varroa jacobsoni'' mite]].<ref>{{cite journal |author= Hoppe, H. |author2=Ritter, W. |author3=Stephen, E. W. C.|year= 1989 |title= The control of parasitic bee mites: Varroa jacobsoni, Acarapis woodi and Tropilaelaps clareae with formic acid |journal= American Bee Journal}}</ref> ===Energy=== Formic acid can be used directly in [[formic acid fuel cell]]s or indirectly in hydrogen [[fuel cell]]s.<ref>{{cite journal |doi=10.1016/j.jpowsour.2004.12.031 |title=Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells |journal=Journal of Power Sources |volume=144 |issue=1 |pages=28–34 |year=2005 |last1=Ha |first1=S |last2=Larsen |first2=R |last3=Masel |first3=R.I |bibcode=2005JPS...144...28H }}</ref><ref>{{cite news |title=Ant power: Take a ride on a bus that runs on formic acid |author=Jorn Madslien |url=https://www.bbc.com/news/business-40403351 |publisher=[[BBC News]] |date=27 June 2017 |access-date=11 July 2017}}</ref> Electrolytic conversion of electrical energy to chemical fuel has been proposed as a large-scale source of formate by various groups.<ref>{{Cite journal|last1=Yishai|first1=Oren|last2=Lindner|first2=Steffen N|last3=Gonzalez de la Cruz|first3=Jorge|last4=Tenenboim|first4=Hezi|last5=Bar-Even|first5=Arren|date=December 2016|title=The formate bio-economy|journal=Current Opinion in Chemical Biology|language=en|volume=35|pages=1–9|doi=10.1016/j.cbpa.2016.07.005|pmid=27459678}}</ref> The formate could be used as feed to modified ''[[Escherichia coli|E. coli]]'' bacteria for producing [[biomass]].<ref>{{cite journal |display-authors=etal|last1=Shmuel Gleizer |title=Conversion of ''Escherichia coli'' to Generate All Biomass Carbon from CO<sub>2</sub> |journal=Cell |date=Nov 2019 |doi=10.1016/j.cell.2019.11.009 |volume=179 |issue=6 |pages=1255–1263.e12|pmid=31778652 |doi-access=free |pmc=6904909 }}</ref><ref>{{Cite journal|last1=Kim|first1=Seohyoung|last2=Lindner|first2=Steffen N.|last3=Aslan|first3=Selçuk|last4=Yishai|first4=Oren|last5=Wenk|first5=Sebastian|last6=Schann|first6=Karin|last7=Bar-Even|first7=Arren|date=2020-02-10|title=Growth of E. coli on formate and methanol via the reductive glycine pathway|url=https://www.nature.com/articles/s41589-020-0473-5|journal=Nature Chemical Biology|language=en|pages=538–545|doi=10.1038/s41589-020-0473-5|issn=1552-4469|volume=16|issue=5|pmid=32042198|s2cid=211074951}}</ref> Natural [[methylotroph]] microbes can feed on formic acid or formate. Formic acid has been considered as a means of [[hydrogen storage]].<ref>{{cite journal |doi=10.1002/cssc.200800133 |pmid=18781551 |title=Breakthroughs in Hydrogen Storage-Formic Acid as a Sustainable Storage Material for Hydrogen |journal=ChemSusChem |volume=1 |issue=10 |pages=805–8 |year=2008 |last1=Joó |first1=Ferenc |bibcode=2008ChSCh...1..805J }}</ref> The co-product of this decomposition, carbon dioxide, can be rehydrogenated back to formic acid in a second step. Formic acid contains 53 g/L hydrogen at room temperature and atmospheric pressure, which is three and a half times as much as compressed hydrogen gas can attain at 350 bar pressure (14.7 g/L). Pure formic acid is a liquid with a [[flash point]] of 69 °C, much higher than that of gasoline (−40 °C) or ethanol (13 °C).{{citation needed|date=November 2017}} It is possible to use formic acid as an intermediary to produce [[isobutanol]] from {{CO2}} using microbes.<ref>{{Cite web|url=https://newenergyandfuel.com/http://newenergyandfuel/com/2012/03/30/ucla-researchers-use-electricity-and-co2-to-make-butanol/|title=UCLA Researchers Use Electricity and CO2 to Make Butanol|date=30 March 2012 }}</ref><ref>{{Cite journal|title=Integrated Electromicrobial Conversion of CO2 to Higher Alcohols|first1=James C.|last1=Liao|first2=Kwang Myung|last2=Cho|first3=Yi-Xin|last3=Huo|first4=Peter|last4=Malati|first5=Wendy|last5=Higashide|first6=Tung-Yun|last6=Wu|first7=Steve|last7=Rogers|first8=David G.|last8=Wernick|first9=Paul H.|last9=Opgenorth|first10=Han|last10=Li|date=30 March 2012|journal=Science|volume=335|issue=6076|pages=1596|doi=10.1126/science.1217643|pmid=22461604|bibcode=2012Sci...335.1596L|s2cid=24328552}}</ref> ===Soldering=== Formic acid has a potential application in [[soldering]]. Due to its capacity to reduce oxide layers, formic acid gas can be blasted at an oxide surface to increase solder [[Soldering#Flux|wettability]].{{cn|date=June 2024}} ===Chromatography=== Formic acid is used as a volatile pH modifier in [[High-performance liquid chromatography|HPLC]] and [[capillary electrophoresis]]. Formic acid is often used as a component of mobile phase in [[Reversed-phase chromatography|reversed-phase]] [[high-performance liquid chromatography]] (RP-HPLC) analysis and separation techniques for the separation of hydrophobic macromolecules, such as peptides, proteins and more complex structures including intact viruses. Especially when paired with [[mass spectrometry]] detection, formic acid offers several advantages over the more traditionally used [[phosphoric acid]].<ref>{{Cite web |url=https://www.novapublishers.com/catalog/product_info.php?products_id=48192 |title=Archived copy |access-date=7 November 2017 |archive-date=7 November 2017 |archive-url=https://web.archive.org/web/20171107112257/https://www.novapublishers.com/catalog/product_info.php?products_id=48192 |url-status=dead }}{{full citation needed|date=November 2017}}</ref><ref>{{cite journal |doi=10.1016/S0021-9673(01)88415-6 |pmid=6304128 |title=Reversed-phase high-performance liquid chromatography of virus proteins and other large hydrophobic proteins in formic acid containing solvents |journal=Journal of Chromatography A |volume=252 |pages=241–54 |year=1982 |last1=Heukeshoven |first1=Jochen |last2=Dernick |first2=Rudolf }}</ref> ===Other uses=== Formic acid is also significantly used in the production of leather, including [[Tanning (leather)|tanning]] (23% of the global consumption in 2009<ref name=CEH/>), and in dyeing and finishing textiles (9% of the global consumption in 2009<ref name=CEH/>) because of its acidic nature. Use as a coagulant in the [[production of rubber]]<ref name = Ullmann_2009/> consumed 6% of the global production in 2009.<ref name=CEH/> Formic acid is also used in place of mineral acids for various cleaning products,<ref name =Ullmann_2009/> such as [[limescale]] remover and [[household cleaner|toilet bowl cleaner]]. Some formate [[esters]] are artificial flavorings and perfumes. Formic acid application has been reported to be an effective treatment for [[wart]]s.<ref name="pmid11589750">{{cite journal |doi=10.1046/j.1365-4362.2001.01242.x |pmid=11589750 |title=Topical formic acid puncture technique for the treatment of common warts |journal=International Journal of Dermatology |volume=40 |issue=6 |pages=415–9 |year=2001 |last1=Bhat |first1=Ramesh M |last2=Vidya |first2=Krishna |last3=Kamath |first3=Ganesh |s2cid=42351889 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Formic acid
(section)
Add topic