Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
First-order logic
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Empty domains=== {{Main|Empty domain}} The definition above requires that the domain of discourse of any interpretation must be nonempty. There are settings, such as [[inclusive logic]], where empty domains are permitted. Moreover, if a class of algebraic structures includes an empty structure (for example, there is an empty [[poset]]), that class can only be an elementary class in first-order logic if empty domains are permitted or the empty structure is removed from the class. There are several difficulties with empty domains, however: * Many common rules of inference are valid only when the domain of discourse is required to be nonempty. One example is the rule stating that <math>\varphi \lor \exists x \psi</math> implies <math>\exists x (\varphi \lor \psi)</math> when ''x'' is not a free variable in <math>\varphi</math>. This rule, which is used to put formulas into [[prenex normal form]], is sound in nonempty domains, but unsound if the empty domain is permitted. * The definition of truth in an interpretation that uses a variable assignment function cannot work with empty domains, because there are no variable assignment functions whose range is empty. (Similarly, one cannot assign interpretations to constant symbols.) This truth definition requires that one must select a variable assignment function (ΞΌ above) before truth values for even atomic formulas can be defined. Then the truth value of a sentence is defined to be its truth value under any variable assignment, and it is proved that this truth value does not depend on which assignment is chosen. This technique does not work if there are no assignment functions at all; it must be changed to accommodate empty domains. Thus, when the empty domain is permitted, it must often be treated as a special case. Most authors, however, simply exclude the empty domain by definition.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
First-order logic
(section)
Add topic