Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Feynman diagram
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Wick theorem ==== {{Main article|Wick's theorem}} Because each field mode is an independent Gaussian, the expectation values for the product of many field modes obeys ''Wick's theorem'': :<math> \left\langle \phi(k_1) \phi(k_2) \cdots \phi(k_n)\right\rangle</math> is zero unless the field modes coincide in pairs. This means that it is zero for an odd number of {{mvar|Ο}}, and for an even number of {{mvar|Ο}}, it is equal to a contribution from each pair separately, with a delta function. :<math>\left\langle \phi(k_1) \cdots \phi(k_{2n})\right\rangle = \sum \prod_{i,j} \frac{\delta\left(k_i - k_j\right) }{k_i^2 } </math> where the sum is over each partition of the field modes into pairs, and the product is over the pairs. For example, :<math> \left\langle \phi(k_1) \phi(k_2) \phi(k_3) \phi(k_4) \right\rangle = \frac{\delta(k_1 -k_2)}{k_1^2}\frac{\delta(k_3-k_4)}{k_3^2} + \frac{\delta(k_1-k_3)}{k_3^2}\frac{\delta(k_2-k_4)}{k_2^2} + \frac{\delta(k_1-k_4)}{k_1^2}\frac{\delta(k_2 -k_3)}{k_2^2}</math> An interpretation of Wick's theorem is that each field insertion can be thought of as a dangling line, and the expectation value is calculated by linking up the lines in pairs, putting a delta function factor that ensures that the momentum of each partner in the pair is equal, and dividing by the propagator.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Feynman diagram
(section)
Add topic