Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Exponential distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Parameter estimation=== The [[maximum likelihood]] estimator for λ is constructed as follows. The [[likelihood function]] for λ, given an [[independent and identically distributed]] sample ''x'' = (''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>) drawn from the variable, is: <math display="block"> L(\lambda) = \prod_{i=1}^n\lambda\exp(-\lambda x_i) = \lambda^n\exp\left(-\lambda \sum_{i=1}^n x_i\right) = \lambda^n\exp\left(-\lambda n\overline{x}\right), </math> where: <math display="block">\overline{x} = \frac{1}{n}\sum_{i=1}^n x_i</math> is the sample mean. The derivative of the likelihood function's logarithm is: <math display="block"> \frac{d}{d\lambda} \ln L(\lambda) = \frac{d}{d\lambda} \left( n \ln\lambda - \lambda n\overline{x} \right) = \frac{n}{\lambda} - n\overline{x}\ \begin{cases} > 0, & 0 < \lambda < \frac{1}{\overline{x}}, \\[8pt] = 0, & \lambda = \frac{1}{\overline{x}}, \\[8pt] < 0, & \lambda > \frac{1}{\overline{x}}. \end{cases} </math> Consequently, the [[maximum likelihood]] estimate for the rate parameter is: <math display="block">\widehat{\lambda}_\text{mle} = \frac{1}{\overline{x}} = \frac{n}{\sum_i x_i}</math> This is {{em|not}} an [[unbiased estimator]] of <math>\lambda,</math> although <math>\overline{x}</math> {{em|is}} an unbiased<ref name="Dean W. Wichern-2007">{{cite book|author1=Richard Arnold Johnson|author2=Dean W. Wichern|title=Applied Multivariate Statistical Analysis|url=https://books.google.com/books?id=gFWcQgAACAAJ|access-date=10 August 2012|year=2007 |publisher=Pearson Prentice Hall|isbn=978-0-13-187715-3}}</ref> MLE<ref>''[http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm NIST/SEMATECH e-Handbook of Statistical Methods]''</ref> estimator of <math>1/\lambda</math> and the distribution mean. The bias of <math> \widehat{\lambda}_\text{mle} </math> is equal to <math display="block">B \equiv \operatorname{E}\left[\left(\widehat{\lambda}_\text{mle} - \lambda\right)\right] = \frac{\lambda}{n - 1} </math> which yields the [[Maximum likelihood estimation#Second-order efficiency after correction for bias|bias-corrected maximum likelihood estimator]] <math display="block">\widehat{\lambda}^*_\text{mle} = \widehat{\lambda}_\text{mle} - B.</math> An approximate minimizer of [[mean squared error]] (see also: [[bias–variance tradeoff]]) can be found, assuming a sample size greater than two, with a correction factor to the MLE: <math display="block">\widehat{\lambda} = \left(\frac{n - 2}{n}\right) \left(\frac{1}{\bar{x}}\right) = \frac{n - 2}{\sum_i x_i}</math> This is derived from the mean and variance of the [[inverse-gamma distribution]], <math display="inline">\mbox{Inv-Gamma}(n, \lambda)</math>.<ref>{{cite journal |first1=Abdulaziz |last1=Elfessi |first2=David M. |last2=Reineke |title=A Bayesian Look at Classical Estimation: The Exponential Distribution |journal=Journal of Statistics Education |volume=9 |issue=1 |year=2001 |doi=10.1080/10691898.2001.11910648|doi-access=free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Exponential distribution
(section)
Add topic