Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== === Stieltjes constants === {{Main|Stieltjes constants}} [[File:Generalisation of Euler–Mascheroni constant.jpg|thumb|upright=2|Euler's generalized constants {{math|abm({{var|-<math>\alpha</math>}})}} for {{math|{{var|α}} > 0}}.|alt=]] ''Euler's generalized constants'' are given by <math display="block">\gamma_\alpha = \lim_{n\to\infty}\left(\sum_{k=1}^n \frac1{k^\alpha} - \int_1^n \frac1{x^\alpha}\,dx\right)</math> for {{math|0 < {{var|α}} < 1}}, with {{mvar|γ}} as the special case {{math|1={{var|α}} = 1}}.{{sfn|Havil|2003|pp=117–18}} Extending for {{math| {{var|α}} > 1}} gives: <math display="block">\gamma_{\alpha} = \zeta(\alpha) - \frac1{\alpha-1}</math> with again the limit: <math display="block">\gamma = \lim_{a\to 1}\left(\zeta(a) - \frac1{a-1}\right)</math> This can be further generalized to <math display="block">c_f = \lim_{n\to\infty}\left(\sum_{k=1}^n f(k) - \int_1^n f(x)\,dx\right)</math> for some arbitrary decreasing function {{mvar|f}}. Setting <math display="block">f_n(x) = \frac{(\log x)^n}{x}</math> gives rise to the [[Stieltjes constants]] <math>\gamma_n</math>, that occur in the [[Laurent series]] expansion of the [[Riemann zeta function]]: : <math>\zeta(1+s)=\frac{1}{s}+\sum_{n=0}^\infty \frac{(-1)^n}{n!} \gamma_n s^n.</math> with <math>\gamma_0 = \gamma = 0.577\dots</math> {| class="wikitable" |''n'' |approximate value of γ<sub>''n''</sub> |[[OEIS]] |- |0 | +0.5772156649015 |{{OEIS link|A001620}} |- |1 |−0.0728158454836 |{{OEIS link|A082633}} |- |2 |−0.0096903631928 |{{OEIS link|A086279}} |- |3 | +0.0020538344203 |{{OEIS link|A086280}} |- |4 | +0.0023253700654 |{{OEIS link|A086281}} |- |100 |−4.2534015717080 × 10<sup>17</sup> | |- |1000 |−1.5709538442047 × 10<sup>486</sup> | |} === Euler-Lehmer constants === ''Euler–Lehmer constants'' are given by summation of inverses of numbers in a common modulo class:{{r|RamMurtySaradha2010}} <math display="block">\gamma(a,q) = \lim_{x\to \infty}\left (\sum_{0<n\le x \atop n\equiv a \pmod q} \frac1{n}-\frac{\log x}{q}\right).</math> The basic properties are <math display="block">\begin{align} &\gamma(0,q) = \frac{\gamma -\log q}{q}, \\ &\sum_{a=0}^{q-1} \gamma(a,q)=\gamma, \\ &q\gamma(a,q) = \gamma-\sum_{j=1}^{q-1}e^{-\frac{2\pi aij}{q}}\log\left(1-e^{\frac{2\pi ij}{q}}\right), \end{align}</math> and if the [[greatest common divisor]] {{math|1=gcd({{var|a}},{{var|q}}) = {{var|d}}}} then <math display="block">q\gamma(a,q) = \frac{q}{d}\gamma\left(\frac{a}{d},\frac{q}{d}\right)-\log d.</math> ===Masser-Gramain constant=== A two-dimensional generalization of Euler's constant is the [[Masser-Gramain constant]]. It is defined as the following limiting difference:<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Masser-Gramain Constant |url=https://mathworld.wolfram.com/Masser-GramainConstant.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref> :<math>\delta = \lim_{n\to\infty} \left( -\log n + \sum_{k=2}^n \frac{1}{\pi r_k^2} \right)</math> where <math>r_k</math> is the smallest radius of a disk in the complex plane containing at least <math>k</math> [[Gaussian integer|Gaussian integers]]. The following bounds have been established: <math>1.819776 < \delta < 1.819833</math>.<ref>{{Cite web |last1=Melquiond |first1=Guillaume |last2=Nowak |first2=W. Georg |last3=Zimmermann |first3=Paul |title=Numerical approximation of the Masser-Gramain constant to four decimal digits |url=https://www.lri.fr/~melquion/doc/12-mc.pdf |access-date=2024-10-03}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's constant
(section)
Add topic