Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipsoid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Parametric representation === [[File:Ellipsoid-affin.svg|300px|thumb|ellipsoid as an affine image of the unit sphere]] The key to a parametric representation of an ellipsoid in general position is the alternative definition: : ''An ellipsoid is an affine image of the unit sphere.'' An [[affine transformation]] can be represented by a translation with a vector {{math|'''f'''<sub>0</sub>}} and a regular 3 × 3 matrix {{math|'''''A'''''}}: : <math>\mathbf x \mapsto \mathbf f_0 + \boldsymbol A \mathbf x = \mathbf f_0 + x\mathbf f_1 + y\mathbf f_2 + z\mathbf f_3</math> where {{math|'''f'''<sub>1</sub>, '''f'''<sub>2</sub>, '''f'''<sub>3</sub>}} are the column vectors of matrix {{math|'''''A'''''}}. A parametric representation of an ellipsoid in general position can be obtained by the parametric representation of a unit sphere (see above) and an affine transformation: : <math>\mathbf x(\theta, \varphi) = \mathbf f_0 + \mathbf f_1 \cos\theta \cos\varphi + \mathbf f_2 \cos\theta \sin\varphi + \mathbf f_3 \sin\theta, \qquad -\tfrac{\pi}{2} < \theta < \tfrac{\pi}{2},\quad 0 \le \varphi < 2\pi</math>. If the vectors {{math|'''f'''<sub>1</sub>, '''f'''<sub>2</sub>, '''f'''<sub>3</sub>}} form an orthogonal system, the six points with vectors {{math|'''f'''<sub>0</sub> ± '''f'''<sub>1,2,3</sub>}} are the vertices of the ellipsoid and {{math|{{abs|'''f'''<sub>1</sub>}}, {{abs|'''f'''<sub>2</sub>}}, {{abs|'''f'''<sub>3</sub>}}}} are the semi-principal axes. A surface normal vector at point {{math|'''x'''(''θ'', ''φ'')}} is : <math>\mathbf n(\theta, \varphi) = \mathbf f_2 \times \mathbf f_3\cos\theta\cos\varphi + \mathbf f_3 \times \mathbf f_1\cos\theta\sin\varphi + \mathbf f_1 \times \mathbf f_2\sin\theta.</math> For any ellipsoid there exists an [[Implicit surface|implicit representation]] {{math|''F''(''x'', ''y'', ''z'') {{=}} 0}}. If for simplicity the center of the ellipsoid is the origin, {{math|'''f'''<sub>0</sub> {{=}} '''0'''}}, the following equation describes the ellipsoid above:<ref>[http://www.mathematik.tu-darmstadt.de/~ehartmann/cdg-skript-1998.pdf ''Computerunterstützte Darstellende und Konstruktive Geometrie.''] {{webarchive |url=https://web.archive.org/web/20131110190049/http://www.mathematik.tu-darmstadt.de/~ehartmann/cdg-skript-1998.pdf |date=2013-11-10}} Uni Darmstadt (PDF; 3,4 MB), S. 88.</ref> : <math>F(x, y, z) = \operatorname{det}\left(\mathbf x, \mathbf f_2, \mathbf f_3\right)^2 + \operatorname{det}\left(\mathbf f_1,\mathbf x, \mathbf f_3\right)^2 + \operatorname{det}\left(\mathbf f_1, \mathbf f_2, \mathbf x\right)^2 - \operatorname{det}\left(\mathbf f_1, \mathbf f_2, \mathbf f_3\right)^2 = 0</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipsoid
(section)
Add topic