Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cardinality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Uniqueness ==== An intuitive property of finite sets is that, for example, if a set has cardinality 4, then it does not also have cardinality 5. Intuitively meaning that a set cannot have both exaclty 4 elements and exactly 5 elements. However, it is not so obviously proven. The following proof is adapted from ''Analysis I'' by [[Terence Tao]].{{Sfn|Tao|2022|p=59}} [[File:Lemma function.png|thumb|Intuitive depiction of the function <math>g</math> in the lemma, for the case <math>|X| = 7.</math>]] Lemma: If a set <math>X</math> has cardinality <math>n \geq 1,</math> and <math>x_0 \in X,</math> then the set <math>X - \{x_0\} </math> (i.e. <math>X</math> with the element <math>x_0</math> removed) has cardinality <math>n-1.</math> Proof: Given <math>X</math> as above, since <math>X</math> has cardinality <math>n,</math> there is a bijection <math>f</math> from <math>X</math> to <math>\{1,\,2,\, \dots, \, n\}.</math> Then, since <math>x_0 \in X,</math> there must be some number <math>f(x_0)</math> in <math>\{1,\,2,\, \dots, \, n\}.</math> We need to find a bijection from <math>X - \{x_0\} </math> to <math>\{1, \dots n-1\}</math> (which may be empty). Define a function <math>g</math> such that <math>g(x) = f(x)</math> if <math>f(x) < f(x_0),</math> and <math>g(x) = f(x)-1</math> if <math>f(x) > f(x_0).</math> Then <math>g</math> is a bijection from <math>X - \{x_0\} </math> to <math>\{1, \dots n-1\}.</math> Theorem: If a set <math>X</math> has cardinality <math>n,</math> then it cannot have any other cardinality. That is, <math>X</math> cannot also have cardinality <math>m \neq n.</math> Proof: If <math>X</math> is empty (has cardinality 0), then there cannot exist a bijection from <math>X</math> to any nonempty set <math>Y,</math> since nothing mapped to <math>y_0 \in Y.</math> Assume, by [[Mathematical induction|induction]] that the result has been proven up to some cardinality <math>n.</math> If <math>X,</math> has cardinality <math>n+1,</math> assume it also has cardinality <math>m.</math> We want to show that <math>m = n+1.</math> By the lemma above, <math>X - \{x_0\} </math> must have cardinality <math>n</math> and <math>m-1.</math> Since, by induction, cardinality is unique for sets with cardinality <math>n,</math> it must be that <math>m-1 = n,</math> and thus <math>m = n+1.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cardinality
(section)
Add topic