Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bessel function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Recurrence relations === The functions {{mvar|J<sub>α</sub>}}, {{mvar|Y<sub>α</sub>}}, {{math|''H''{{su|b=''α''|p=(1)}}}}, and {{math|''H''{{su|b=''α''|p=(2)}}}} all satisfy the [[recurrence relation]]s<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_361.htm p. 361, 9.1.27].</ref> <math display="block">\frac{2\alpha}{x} Z_\alpha(x) = Z_{\alpha-1}(x) + Z_{\alpha+1}(x)</math> and <math display="block"> 2\frac{dZ_\alpha (x)}{dx} = Z_{\alpha-1}(x) - Z_{\alpha+1}(x),</math> where {{mvar|Z}} denotes {{mvar|J}}, {{mvar|Y}}, {{math|''H''<sup>(1)</sup>}}, or {{math|''H''<sup>(2)</sup>}}. These two identities are often combined, e.g. added or subtracted, to yield various other relations. In this way, for example, one can compute Bessel functions of higher orders (or higher derivatives) given the values at lower orders (or lower derivatives). In particular, it follows that<ref>Abramowitz and Stegun, [https://personal.math.ubc.ca/~cbm/aands/page_361.htm p. 361, 9.1.30].</ref> <math display="block">\begin{align} \left( \frac{1}{x} \frac{d}{dx} \right)^m \left[ x^\alpha Z_\alpha (x) \right] &= x^{\alpha - m} Z_{\alpha - m} (x), \\ \left( \frac{1}{x} \frac{d}{dx} \right)^m \left[ \frac{Z_\alpha (x)}{x^\alpha} \right] &= (-1)^m \frac{Z_{\alpha + m} (x)}{x^{\alpha + m}}. \end{align}</math> ''Modified'' Bessel functions follow similar relations: <math display="block">e^{\left(\frac{x}{2}\right)\left(t+\frac{1}{t}\right)} = \sum_{n=-\infty}^\infty I_n(x) t^n</math> and <math display="block">e^{z \cos \theta} = I_0(z) + 2\sum_{n=1}^\infty I_n(z) \cos n\theta</math> and <math display="block"> \frac{1}{2\pi} \int_0^{2\pi} e^{z \cos (m\theta) + y \cos \theta} d\theta = I_0(z)I_0(y) + 2\sum_{n=1}^\infty I_n(z)I_{mn}(y).</math> The recurrence relation reads <math display="block">\begin{align} C_{\alpha-1}(x) - C_{\alpha+1}(x) &= \frac{2\alpha}{x} C_\alpha(x), \\[1ex] C_{\alpha-1}(x) + C_{\alpha+1}(x) &= 2\frac{d}{dx}C_\alpha(x), \end{align}</math> where {{mvar|C<sub>α</sub>}} denotes {{mvar|I<sub>α</sub>}} or {{math|''e''<sup>''αi''π</sup>''K<sub>α</sub>''}}. These recurrence relations are useful for discrete diffusion problems.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bessel function
(section)
Add topic