Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Transmission line
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Matrix parameters == The [[Electronic circuit simulation|simulation]] of transmission lines embedded into larger systems generally utilize [[admittance parameters]] (Y matrix), [[impedance parameters]] (Z matrix), and/or [[scattering parameters]] (S matrix) that embodies the full transmission line model needed to support the simulation. === Admittance parameters === Admittance (Y) parameters may be defined by applying a fixed voltage to one port (V1) of a transmission line with the other end shorted to ground and measuring the resulting current running into each port (I1, I2)<ref name=":4">{{Cite book |last1=Leon |first1=Benjamin J. |url=https://archive.org/details/basiclinearnetwo0000leon/mode/2up |title=Basic Linear Networks for Electrical and Electronics Engineer |last2=Wintz |first2=Paul A. |date=1970 |publisher=Holt, Rinehart, and Winston |isbn=0030783259 |location=US |pages=127 to 129 |language=English}}</ref><ref name=":5">{{Cite book |last=Pozar |first=David M. |title=Microwave Engineering |date=2013 |publisher=John Wiley & Sones, Inc. |isbn=978-81-265-4190-4 |edition=4th |location=Hoboken, NJ, US |publication-date=2013 |pages=174, 175 |language=English}}</ref> and computing the admittance on each port as a ratio of I/V The admittance parameter Y11 is I1/V1, and the admittance parameter Y12 is I2/V1. Since transmission lines are electrically passive and symmetric devices, Y12 = Y21, and Y11 = Y22. For lossless and lossy transmission lines respectively, the Y parameter matrix is as follows:<ref name=":2">{{Cite book |last1=Matthaei |first1=George L. |url=https://archive.org/details/microwavefilters0000matt |title=Microwave Filters, Impudence-Matching Networks, and Coupling Structures |last2=Young |first2=Leo |last3=Jones |first3=E. M. T. |date=1984 |publisher=Artech House, Inc. |isbn=0-89006-099-1 |location=610 Washington Street, Dedham, Massachusetts, US |publication-date=1985 |pages=30 |language=English}}</ref><ref name=":0">{{Cite web |last1=Drakos |first1=Nikos |last2=Hennecke |first2=Marcus |last3=Moore |first3=Ross |last4=Swan |first4=Herb |date=November 22, 2013 |title=Transmission Line |url=https://qucs.sourceforge.net/tech/node61.html |website=Quite Universal Circuit Simulator (Qucs)}}</ref> <math>Y_{\text{Lossless}}=\begin{bmatrix} \frac{-jcot(\beta l)}{Z_o} & \frac{jcsc(\beta l)}{Z_o} \\ \frac{jcsc(\beta l)}{Z_o} & \frac{-jcot(\beta l)}{Z_o} \end{bmatrix} \text{ } Y_{\text{Lossy}}=\begin{bmatrix} \frac{coth(\gamma l)}{Z_o} & \frac{-csch(\gamma l)}{Z_o} \\ \frac{-csch(\gamma l)}{Z_o} & \frac{coth(\gamma l)}{Z_o} \end{bmatrix}</math> === Impedance parameters === Impedance (Z) parameter may defines by applying a fixed current into one port (I1) of a transmission line with the other port open and measuring the resulting voltage on each port (V1, V2)<ref name=":4" /><ref name=":5" /> and computing the impedance parameter Z11 is V1/I1, and the impedance parameter Z12 is V2/I1. Since transmission lines are electrically passive and symmetric devices, V12 = V21, and V11 = V22. In the Y and Z matrix definitions, <math>Y = Z^{-1}</math> and <math>Z = Y^{-1}</math>.<ref>{{Cite book |last=Pozar |first=David M. |url=https://archive.org/details/microwaveenginee0000poza/mode/2up |title=Microwave Engineering |date=1998 |publisher=John Wiley & Sons, Inc. |isbn=0-471-17096-8 |edition=2nd |location=Canada |publication-date=1998 |pages=192 |language=English}}</ref> Unlike ideal [[Lumped-element model|lumped 2 port elements]] ([[Resistor|resistors]], [[Capacitor|capacitors]], [[Inductor|inductors]], etc.) which do not have defined Z parameters, transmission lines have an internal path to ground, which permits the definition of Z parameters. For lossless and lossy transmission lines respectively, the Z parameter matrix is as follows:<ref name=":2" /><ref name=":0" /> <math>Z_{\text{Lossless}}=\begin{bmatrix} -jZ_ocot(\beta l) & -jZ_ocsc(\beta l) \\ -jZ_ocsc(\beta l) & -jZ_ocot(\beta l) \end{bmatrix} \text{ } Z_{\text{Lossy}}=\begin{bmatrix} Z_ocoth(\gamma l) & Z_ocsch(\gamma l) \\ Z_ocsch(\gamma l) & Z_ocoth(\gamma l) \end{bmatrix}</math> === Scattering parameters === Scattering (S) matrix parameters model the electrical behavior of the transmission line with [[Impedance matching|matched loads]] at each [[Electrical termination|termination]].<ref name=":2" /> For lossless and lossy transmission lines respectively, the S parameter matrix is as follows,<ref>{{Cite web |last=University of Texas at Austin |date=December 14, 2015 |title=Microsoft Word - dissertation_def_rev.doc - ch_2.pdf |url=http://weewave.mer.utexas.edu/MED_files/Former_Students/thesis_dssrtns/Friar_R_diss/ch_2.pdf }}</ref><ref>{{Cite web |date=October 21, 2020 |title=2.3: Scattering Parameters - Engineering LibreTexts |url=https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/Microwave_and_RF_Design_III_-_Networks_(Steer)/02%3A_Chapter_2/2.3%3A_Scattering_Parameters |website=Engineering LibreTexts}}</ref> using standard [[Hyperbolic functions#Complex trigonometric definitions|hyperbolic to circular complex translations]]. <math>S_{\text{Lossless}}=\begin{bmatrix} \frac{(Z_o^2-Z_p^2)sin(\beta l)}{(Z_o^2+Z_p^2)sin(\beta l)-j2Z_oZ_pcos(\beta l)} & \frac{2Z_oZ_p}{j(Z_o^2+Z_p^2)sin(\beta l)+2Z_oZ_pcos(\beta l)} \\ \frac{2Z_oZ_p}{j(Z_o^2+Z_p^2)sin(\beta l)+2Z_oZ_pcos(\beta l)} & \frac{(Z_o^2-Z_p^2)sin(\beta l)}{(Z_o^2+Z_p^2)sin(\beta l)-j2Z_oZ_pcos(\beta l)} \end{bmatrix} \text{ } S_{\text{Lossy}}=\begin{bmatrix} \frac{(Z_o^2-Z_p^2)sinh(\gamma l)}{(Z_o^2+Z_p^2)sinh(\gamma l)+2Z_oZ_pcosh(\gamma l)} & \frac{2Z_oZ_p}{(Z_o^2+Z_p^2)sinh(\gamma l)+2Z_oZ_pcosh(\gamma l)} \\ \frac{2Z_oZ_p}{(Z_o^2+Z_p^2)sinh(\gamma l)+2Z_oZ_pcosh(\gamma l)} & \frac{(Z_o^2-Z_p^2)sinh(\gamma l)}{(Z_o^2+Z_p^2)sinh(\gamma l)+2Z_oZ_pcosh(\gamma l)} \end{bmatrix}</math> === Variable definitions === In all matrix parameters above, the following variable definitions apply: <math>Z_o</math> = [[characteristic impedance]] Zp = port impedance, or [[Electrical termination|termination impedance]] <math>\gamma = \alpha + j\beta</math> = the [[propagation constant]] per unit length <math>\alpha</math> = [[attenuation constant]] in [[Neper|nepers]] per unit length <math>\beta = \frac{2\pi}{\lambda} = \frac{\omega}{V}</math> = [[Wavenumber|wave number]] or [[phase constant]] radians per unit length <math>\omega</math> = [[frequency]] radians / second <math>V=\frac{1}{\sqrt{LC}} = \frac{V_C}{\sqrt{E_{re}}}</math> = [[Signal velocity|Speed of propagation]] <math>\lambda</math> = [[Wavelength|wave length]] in unit length L = [[inductance]] per unit length C = [[capacitance]] per unit length <math>E_{re}</math> = [[Relative permittivity|effective dielectric constant]] <math>V_C</math> = 299,792,458 meters / second = [[Speed of light]] in a vacuum
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Transmission line
(section)
Add topic