Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Simple continued fraction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Non-simple continued fraction== {{main|Continued fraction (non-simple)}} A non-simple continued fraction is an expression of the form :<math>x = b_0 + \cfrac{a_1}{b_1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cfrac{a_4}{b_4 + \ddots\,}}}}</math> where the ''a''<sub>''n''</sub> (''n'' > 0) are the partial numerators, the ''b''<sub>''n''</sub> are the partial denominators, and the leading term ''b''<sub>0</sub> is called the ''integer'' part of the continued fraction. To illustrate the use of non-simple continued fractions, consider the following example. The sequence of partial denominators of the simple continued fraction of {{pi}} does not show any obvious pattern: :<math>\pi=[3;7,15,1,292,1,1,1,2,1,3,1,\ldots]</math> or :<math>\pi=3+\cfrac{1}{7+\cfrac{1}{15+\cfrac{1}{1+\cfrac{1}{292+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{1+\cfrac{1}{2+\cfrac{1}{1+\cfrac{1}{3+\cfrac{1}{1+\ddots}}}}}}}}}}}</math> However, several non-simple continued fractions for {{pi}} have a perfectly regular structure, such as: :<math> \pi=\cfrac{4}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}} =\cfrac{4}{1+\cfrac{1^2}{3+\cfrac{2^2}{5+\cfrac{3^2}{7+\cfrac{4^2}{9+\ddots}}}}} =3+\cfrac{1^2}{6+\cfrac{3^2}{6+\cfrac{5^2}{6+\cfrac{7^2}{6+\cfrac{9^2}{6+\ddots}}}}} </math> :<math>\displaystyle \pi=2+\cfrac{2}{1+\cfrac{1}{1/2+\cfrac{1}{1/3+\cfrac{1}{1/4+\ddots}}}}=2+\cfrac{2}{1+\cfrac{1\cdot2}{1+\cfrac{2\cdot3}{1+\cfrac{3\cdot4}{1+\ddots}}}}</math> :<math> \displaystyle \pi=2+\cfrac{4}{3+\cfrac{1\cdot3}{4+\cfrac{3\cdot5}{4+\cfrac{5\cdot7}{4+\ddots}}}}</math> The first two of these are special cases of the [[Inverse trigonometric functions#Variant: Continued fractions for arctangent|arctangent]] function with {{pi}} = 4βarctanβ(1) and the fourth and fifth one can be derived using the [[Wallis product]].{{sfn|Bunder|Tonien|2017}}{{sfn|Scheinerman|Pickett|Coleman|2008}} :<math> \pi=3+\cfrac{1}{6+\cfrac{1^3+2^3}{6\cdot1^2+1^2\cfrac{1^3+2^3+3^3+4^3}{6\cdot2^2+2^2\cfrac{1^3+2^3 +3^3+4^3+5^3+6^3}{6\cdot3^2+3^2\cfrac{1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3}{6\cdot4^2+\ddots}}}}} </math> The continued fraction of <math>\pi</math> above consisting of cubes uses the Nilakantha series and an exploit from Leonhard Euler.{{sfn|Foster|2015}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Simple continued fraction
(section)
Add topic