Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Rare-earth element
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other sources=== ====Mine tailings==== Significant quantities of rare-earth oxides are found in tailings accumulated from 50 years of [[uranium ore]], [[shale]], and [[loparite]] mining at [[Sillamäe]], [[Estonia]].<ref>{{cite book |title=Turning a Problem Into a Resource: Remediation and Waste Management at the Sillamäe Site, Estonia |last=Rofer |first=Cheryl K. |author2=Tõnis Kaasik |series=Volume 28 of NATO science series: Disarmament technologies |year=2000 |publisher=Springer |isbn=978-0-7923-6187-9 |page=229}}</ref> Due to the rising prices of rare earths, extraction of these oxides has become economically viable. The country currently exports around 3,000 metric tons per year, representing around 2% of world production.<ref>{{cite news |title=Estonia's rare earth break China's market grip |author=Anneli Reigas |newspaper=AFP |date=2010-11-30 |url=https://www.google.com/hostednews/afp/article/ALeqM5itXbI57zv-lwfcaFdBdh7UZXuVuA?docId=CNG.a00f68010092a06189a0276c763e93a4.141 |access-date=2010-12-01 |archive-date=May 13, 2012 |archive-url=https://web.archive.org/web/20120513001130/https://www.google.com/hostednews/afp/article/ALeqM5itXbI57zv-lwfcaFdBdh7UZXuVuA?docId=CNG.a00f68010092a06189a0276c763e93a4.141 |url-status=dead}}</ref> Similar resources are suspected in the western United States, where [[gold rush]]-era mines are believed to have discarded large amounts of rare earths, because they had no value at the time.<ref>{{cite news |title=Gold Rush Trash is Information Age Treasure |date=July 21, 2013 |url=https://www.usatoday.com/story/money/business/2013/07/21/gold-rush-era-discards-could-fuel-cellphones-tvs/2572761/ |work=USA Today |last=Cone |first=Tracie |access-date=July 21, 2013 |archive-date=June 15, 2022 |archive-url=https://web.archive.org/web/20220615124340/https://www.usatoday.com/story/money/business/2013/07/21/gold-rush-era-discards-could-fuel-cellphones-tvs/2572761/ |url-status=live}}</ref> ====Ocean mining==== In January 2013 a Japanese deep-sea research vessel obtained seven deep-sea mud core samples from the Pacific Ocean seafloor at 5,600 to 5,800 meters depth, approximately {{convert|250|km|mi}} south of the island of [[Minami-Tori-Shima]].<ref>{{cite news |title=Seabed offers brighter hope in rare-earth hunt |url=http://asia.nikkei.com/Japan-Update/Seabed-offers-brighter-hope-in-rare-earth-hunt |access-date=11 December 2016 |work=Nikkei Asian Review |agency=Nikkei Inc. |date=25 November 2014 |archive-date=December 20, 2016 |archive-url=https://web.archive.org/web/20161220114144/http://asia.nikkei.com/Japan-Update/Seabed-offers-brighter-hope-in-rare-earth-hunt |url-status=live}}</ref> The research team found a mud layer 2 to 4 meters beneath the seabed with concentrations of up to 0.66% rare-earth oxides. A potential deposit might compare in grade with the ion-absorption-type deposits in southern China that provide the bulk of Chinese REO mine production, which grade in the range of 0.05% to 0.5% REO.<ref>{{cite web |title=Discovery of rare earths around Minami-Torishima |url=http://www.u-tokyo.ac.jp/en/utokyo-research/research-news/discovery-of-rare-earths-around-minami-torishima/ |website=UTokyo Research |publisher=University of Tokyo |access-date=11 December 2016 |date=2 May 2013 |archive-date=June 20, 2018 |archive-url=https://web.archive.org/web/20180620002602/https://www.u-tokyo.ac.jp/en/utokyo-research/research-news/discovery-of-rare-earths-around-minami-torishima/ |url-status=live}}</ref><ref>{{cite conference |last1=Zhi Li |first1=Ling |last2=Yang |first2=Xiaosheng |title=China's rare earth ore deposits and beneficiation techniques |url=http://www.eurare.eu/docs/eres2014/firstSession/XiaoshengYang.pdf |conference=1st European Rare Earth Resources Conference |publisher=European Commission for the 'Development of a sustainable exploitation scheme for Europe's Rare Earth ore deposits' |place=Milos, Greece |access-date=11 December 2016 |date=4 September 2014 |archive-date=January 19, 2020 |archive-url=https://web.archive.org/web/20200119193604/http://www.eurare.eu/docs/eres2014/firstSession/XiaoshengYang.pdf |url-status=live}}</ref> ====Waste and recycling==== Another recently developed source of rare earths is [[electronic waste]] and other [[waste]]s that have significant rare-earth components.<ref>{{cite book |last1=Um |first1=Namil |title=Hydrometallurgical recovery process of rare-earth elements from waste: main application of acid leaching with devised diagram |date=July 2017 |publisher=INTECH |isbn=978-953-51-3401-5 |pages=41–60}}</ref> Advances in [[recycling|recycling technology]] have made the extraction of rare earths from these materials less expensive.<ref>{{cite web |url=http://www.recyclinginternational.com/recycling-news/6976/research-and-legislation/belgium/new-liquid-extraction-frontier-rare-earths |date=March 26, 2013 |title=New liquid extraction frontier for rare earths? |publisher=Recycling International |access-date=10 February 2017 |archive-date=July 29, 2017 |archive-url=https://web.archive.org/web/20170729112611/http://www.recyclinginternational.com/recycling-news/6976/research-and-legislation/belgium/new-liquid-extraction-frontier-rare-earths }}</ref> Recycling plants operate in Japan, where an estimated 300,000 tons of rare earths are found in unused electronics.<ref>{{cite news |last=Tabuchi |first=Hiroko |author-link=Hiroko Tabuchi |url=https://www.nytimes.com/2010/10/05/business/global/05recycle.html |title=Japan Recycles Minerals From Used Electronics |work=[[New York Times]] |date=October 5, 2010 |access-date=February 25, 2017 |archive-date=June 22, 2022 |archive-url=https://web.archive.org/web/20220622084534/https://www.nytimes.com/2010/10/05/business/global/05recycle.html |url-status=live}}</ref> In [[France]], the [[Rhodia (company)|Rhodia]] group is setting up two factories, in [[La Rochelle]] and [[Saint-Fons]], that will produce 200 tons of rare earths a year from used [[fluorescent lamp]]s, magnets, and batteries.<ref>{{cite web |url=http://www.rhodia.com/en/news_center/news_releases/Recycle_rare_earths_031011.tcm |title=Rhodia to recycle rare earths from magnets |website=Solvay — Rhodia |date=October 3, 2011 |archive-url=https://web.archive.org/web/20140421050640/http://www.rhodia.com/en/news_center/news_releases/Recycle_rare_earths_031011.tcm |archive-date=2014-04-21}}</ref><ref>{{cite web |url=http://www.recyclinginternational.com/recycling-news/3948/e-waste-and-batteries/france/rhodia-expands-rare-earth-recycling-reach |date=October 11, 2011 |title=Rhodia expands rare earth recycling reach |publisher=Recycling International |access-date=10 February 2017 |archive-date=July 29, 2017 |archive-url=https://web.archive.org/web/20170729112600/http://www.recyclinginternational.com/recycling-news/3948/e-waste-and-batteries/france/rhodia-expands-rare-earth-recycling-reach |url-status=live}}</ref> [[Coal]]<ref>{{Cite journal |last1=Sorokin |first1=Anatoliy P |last2=Konyushok |first2=Andrey A |last3=Ageev |first3=Oleg A |last4=Zarubina |first4=Natalia V |last5=Ivanov |first5=Vladimir V |last6=Wang |first6=Jinxi |date=2019 |title=Distribution of rare earth and selected trace elements in combustion products of Yerkovetskoe brown coal deposit (Amur Region, Russia) |journal=Energy Exploration & Exploitation |volume=37 |issue=6 |pages=1721–1736 |doi=10.1177/0144598719862416 |jstor=26785615 |issn=0144-5987|doi-access=free |bibcode=2019EExEx..37.1721S }}</ref> and coal by-products, such as [[Coal combustion products|ash]] and sludge, are a potential source of critical elements including rare-earth elements (REE) with estimated amounts in the range of 50 million metric tons.<ref>{{cite journal |author1=Wencai Zhang |author2=Mohammad Rezaee |author3=Abhijit Bhagavatula |author4=Yonggai Li |author5=John Groppo |author6=Rick Honaker |s2cid=128509001 |journal=International Journal of Coal Preparation and Utilization |doi=10.1080/19392699.2015.1033097 |volume=35 |year=2015 |issue=6 |pages=295–330 |title=A Review of the Occurrence and Promising Recovery Methods of Rare Earth Elements from Coal and Coal By-Products|bibcode=2015IJCPU..35..295Z }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Rare-earth element
(section)
Add topic