Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Nuclear chain reaction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Nuclear power plants and control of chain reactions == {{main|Chicago Pile-1|Nuclear reactor physics|Nuclear criticality safety}} Chain reactions naturally give rise to reaction rates that grow (or shrink) [[Exponential growth|exponentially]], whereas a nuclear power reactor needs to be able to hold the reaction rate reasonably constant. To maintain this control, the chain reaction criticality must have a slow enough time scale to permit intervention by additional effects (e.g., mechanical control rods or thermal expansion). Consequently, all nuclear power reactors (even [[fast-neutron reactor]]s) rely on delayed neutrons for their criticality. An operating nuclear power reactor fluctuates between being slightly subcritical and slightly delayed-supercritical, but must always remain below prompt-critical. It is impossible for a nuclear power plant to undergo a nuclear chain reaction that results in an explosion of power comparable with a nuclear weapon, but even low-powered explosions from uncontrolled chain reactions (that would be considered "fizzles" in a bomb) may still cause considerable damage and [[Nuclear meltdown|meltdown in a reactor]]. For example, the [[Chernobyl disaster]] involved a runaway chain reaction, but the result was a low-powered steam explosion from the relatively small release of heat, as compared with a bomb. However, the reactor complex was destroyed by the heat, as well as by ordinary burning of the graphite exposed to air.<ref name=Lamarsh>{{cite book |last=Lamarsh |first=John |author2=Baratta, Anthony |title=Introduction to Nuclear Engineering |year=2001 |publisher=Prentice Hall |isbn=978-0-201-82498-8 }}</ref> Such steam explosions would be typical of the very diffuse assembly of materials in a nuclear reactor, even under the worst conditions. In addition, other steps can be taken for safety. For example, power plants licensed in the United States require a negative [[void coefficient]] of reactivity (this means that if [[loss of coolant accident|coolant is removed]] from the reactor core, the nuclear reaction will tend to shut down, not increase). This eliminates the possibility of the type of accident that occurred at Chernobyl (which was caused by a positive void coefficient). However, nuclear reactors are still capable of causing smaller chemical explosions even after complete shutdown, such as was the case of the [[Fukushima Daiichi nuclear disaster]]. In such cases, residual [[decay heat]] from the core may cause high temperatures if there is loss of coolant flow, even a day after the chain reaction has been shut down (see [[SCRAM]]). This may cause a chemical reaction between water and fuel that produces hydrogen gas, which can explode after mixing with air, with severe contamination consequences, since fuel rod material may still be exposed to the atmosphere from this process. However, such explosions do not happen during a chain reaction, but rather as a result of energy from radioactive beta decay, after the fission chain reaction has been stopped.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Nuclear chain reaction
(section)
Add topic