Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Moment of inertia
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Motion in space of a rigid body, and the inertia matrix == The scalar moments of inertia appear as elements in a matrix when a system of particles is assembled into a rigid body that moves in three-dimensional space. This inertia matrix appears in the calculation of the angular momentum, kinetic energy and resultant torque of the rigid system of particles.<ref name="Marion 1995"/><ref name="Symon 1971"/><ref name="Tenenbaum 2004"/><ref name="Kane"/><ref name="Tsai">L. W. Tsai, Robot Analysis: The mechanics of serial and parallel manipulators, John-Wiley, NY, 1999.</ref> {{For|analysis of a spinning top|Precession#Classical (Newtonian)|Euler's equations (rigid body dynamics)}} Let the system of <math>n</math> particles, <math>P_i, i = 1, \dots, n</math> be located at the coordinates <math>\mathbf{r}_i</math> with velocities <math>\mathbf{v}_i</math> relative to a fixed reference frame. For a (possibly moving) reference point <math>\mathbf{R}</math>, the relative positions are <math display="block">\Delta\mathbf{r}_i = \mathbf{r}_i - \mathbf{R}</math> and the (absolute) velocities are <math display="block">\mathbf{v}_i = \boldsymbol{\omega} \times \Delta\mathbf{r}_i + \mathbf{V}_\mathbf{R}</math> where <math>\boldsymbol{\omega}</math> is the angular velocity of the system, and <math>\mathbf{V_R}</math> is the velocity of <math>\mathbf{R}</math>. === Angular momentum === Note that the [[Cross product#Conversion to matrix multiplication|cross product can be equivalently written as matrix multiplication]] by combining the first operand and the operator into a skew-symmetric matrix, <math>\left[\mathbf{b}\right]</math>, constructed from the components of <math>\mathbf{b} = (b_x, b_y, b_z)</math>: <math display="block">\begin{align} \mathbf{b} \times \mathbf{y} &\equiv \left[\mathbf{b}\right] \mathbf{y} \\ \left[\mathbf{b}\right] &\equiv \begin{bmatrix} 0 & -b_z & b_y \\ b_z & 0 & -b_x \\ -b_y & b_x & 0 \end{bmatrix}. \end{align}</math> The inertia matrix is constructed by considering the angular momentum, with the reference point <math>\mathbf{R}</math> of the body chosen to be the center of mass <math>\mathbf{C}</math>:<ref name="Marion 1995"/><ref name="Kane"/> <math display="block">\begin{align} \mathbf{L} &= \sum_{i=1}^n m_i\,\Delta\mathbf{r}_i \times \mathbf{v}_i \\ &= \sum_{i=1}^n m_i\,\Delta\mathbf{r}_i \times \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i + \mathbf{V}_\mathbf{R}\right) \\ &= \left(-\sum_{i=1}^n m_i\,\Delta\mathbf{r}_i \times \left(\Delta\mathbf{r}_i \times \boldsymbol{\omega}\right)\right) + \left(\sum_{i=1}^n m_i \,\Delta\mathbf{r}_i \times \mathbf{V}_\mathbf{R}\right), \end{align}</math> where the terms containing <math>\mathbf{V_R}</math> (<math>= \mathbf{C}</math>) sum to zero by the definition of [[center of mass]]. Then, the skew-symmetric matrix <math>[\Delta\mathbf{r}_i]</math> obtained from the relative position vector <math>\Delta\mathbf{r}_i = \mathbf{r}_i - \mathbf{C}</math>, can be used to define, <math display="block"> \mathbf{L} = \left(-\sum_{i=1}^n m_i \left[\Delta\mathbf{r}_i\right]^2\right)\boldsymbol{\omega} = \mathbf{I}_\mathbf{C} \boldsymbol{\omega}, </math> where <math>\mathbf{I_C}</math> defined by <math display="block">\mathbf{I}_\mathbf{C} = -\sum_{i=1}^n m_i \left[\Delta\mathbf{r}_i\right]^2,</math> is the symmetric inertia matrix of the rigid system of particles measured relative to the center of mass <math>\mathbf{C}</math>. === Kinetic energy === The kinetic energy of a rigid system of particles can be formulated in terms of the [[center of mass]] and a matrix of mass moments of inertia of the system. Let the system of <math>n</math> particles <math>P_i, i = 1, \dots, n</math> be located at the coordinates <math>\mathbf{r}_i</math> with velocities <math>\mathbf{v}_i</math>, then the kinetic energy is<ref name="Marion 1995"/><ref name="Kane"/> <math display="block"> E_\text{K} = \frac{1}{2} \sum_{i=1}^n m_i \mathbf{v}_i \cdot \mathbf{v}_i = \frac{1}{2} \sum_{i=1}^n m_i \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i + \mathbf{V}_\mathbf{C}\right) \cdot \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i + \mathbf{V}_\mathbf{C}\right), </math> where <math>\Delta\mathbf{r}_i = \mathbf{r}_i - \mathbf{C}</math> is the position vector of a particle relative to the center of mass. This equation expands to yield three terms <math display="block"> E_\text{K} = \frac{1}{2}\left(\sum_{i=1}^n m_i \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right) \cdot \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right)\right) + \left(\sum_{i=1}^n m_i \mathbf{V}_\mathbf{C} \cdot \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right)\right) + \frac{1}{2}\left(\sum_{i=1}^n m_i \mathbf{V}_\mathbf{C} \cdot \mathbf{V}_\mathbf{C}\right). </math> Since the center of mass is defined by <math> \sum_{i=1}^n m_i \Delta\mathbf{r}_i =0</math> , the second term in this equation is zero. Introduce the skew-symmetric matrix <math>[\Delta\mathbf{r}_i]</math> so the kinetic energy becomes <math display="block">\begin{align} E_\text{K} &= \frac{1}{2}\left(\sum_{i=1}^n m_i \left(\left[\Delta\mathbf{r}_i\right] \boldsymbol{\omega}\right) \cdot \left(\left[\Delta\mathbf{r}_i\right] \boldsymbol{\omega}\right)\right) + \frac{1}{2}\left(\sum_{i=1}^n m_i\right) \mathbf{V}_\mathbf{C} \cdot \mathbf{V}_\mathbf{C} \\ &= \frac{1}{2}\left(\sum_{i=1}^n m_i \left(\boldsymbol{\omega}^\mathsf{T}\left[\Delta\mathbf{r}_i\right]^\mathsf{T} \left[\Delta\mathbf{r}_i\right] \boldsymbol{\omega}\right)\right) + \frac{1}{2}\left(\sum_{i=1}^n m_i\right) \mathbf{V}_\mathbf{C} \cdot \mathbf{V}_\mathbf{C} \\ &= \frac{1}{2}\boldsymbol{\omega} \cdot \left(-\sum_{i=1}^n m_i \left[\Delta\mathbf{r}_i\right]^2\right) \boldsymbol{\omega} + \frac{1}{2}\left(\sum_{i=1}^n m_i\right) \mathbf{V}_\mathbf{C} \cdot \mathbf{V}_\mathbf{C}. \end{align}</math> Thus, the kinetic energy of the rigid system of particles is given by <math display="block">E_\text{K} = \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I}_\mathbf{C} \boldsymbol{\omega} + \frac{1}{2} M\mathbf{V}_\mathbf{C}^2.</math> where <math>\mathbf{I_C}</math> is the inertia matrix relative to the center of mass and <math>M</math> is the total mass. === Resultant torque === The inertia matrix appears in the application of Newton's second law to a rigid assembly of particles. The resultant torque on this system is,<ref name="Marion 1995"/><ref name="Kane"/> <math display="block">\boldsymbol{\tau} = \sum_{i=1}^n \left(\mathbf{r_i} - \mathbf{R}\right) \times m_i\mathbf{a}_i,</math> where <math>\mathbf{a}_i</math> is the acceleration of the particle <math>P_i</math>. The [[kinematics]] of a rigid body yields the formula for the acceleration of the particle <math>P_i</math> in terms of the position <math>\mathbf{R}</math> and acceleration <math>\mathbf{A}_\mathbf{R}</math> of the reference point, as well as the angular velocity vector <math>\boldsymbol{\omega}</math> and angular acceleration vector <math>\boldsymbol{\alpha}</math> of the rigid system as, <math display="block">\mathbf{a}_i = \boldsymbol{\alpha} \times \left(\mathbf{r}_i - \mathbf{R}\right) + \boldsymbol{\omega} \times \left( \boldsymbol{\omega} \times \left(\mathbf{r}_i - \mathbf{R}\right) \right) + \mathbf{A}_\mathbf{R}.</math> Use the center of mass <math>\mathbf{C}</math> as the reference point, and introduce the skew-symmetric matrix <math>\left[\Delta\mathbf{r}_i\right] = \left[\mathbf{r}_i - \mathbf{C}\right]</math> to represent the cross product <math>(\mathbf{r}_i - \mathbf{C}) \times</math>, to obtain <math display="block"> \boldsymbol{\tau} = \left(-\sum_{i=1}^n m_i\left[\Delta\mathbf{r}_i\right]^2\right)\boldsymbol{\alpha} + \boldsymbol{\omega} \times \left(-\sum_{i=1}^n m_i \left[\Delta\mathbf{r}_i\right]^2\right)\boldsymbol{\omega} </math> The calculation uses the identity <math display="block"> \Delta\mathbf{r}_i \times \left(\boldsymbol{\omega} \times \left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right)\right) + \boldsymbol{\omega} \times \left(\left(\boldsymbol{\omega} \times \Delta\mathbf{r}_i\right) \times \Delta\mathbf{r}_i\right) = 0, </math> obtained from the [[Jacobi identity]] for the triple [[cross product]] as shown in the proof below: {{math proof|proof= <math display="block">\begin{align} \boldsymbol{\tau} &= \sum_{i=1}^n (\mathbf{r_i} - \mathbf{R})\times (m_i\mathbf{a}_i) \\ &= \sum_{i=1}^n \Delta\mathbf{r}_i\times (m_i\mathbf{a}_i) \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times \mathbf{a}_i]\;\ldots\text{ cross-product scalar multiplication} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\mathbf{a}_{\text{tangential},i} + \mathbf{a}_{\text{centripetal},i} + \mathbf{A}_\mathbf{R})] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\mathbf{a}_{\text{tangential},i} + \mathbf{a}_{\text{centripetal},i} + 0)] \\ \end{align}</math> In the last statement, <math>\mathbf{A}_\mathbf{R} = 0</math> because <math>\mathbf{R}</math> is either at rest or moving at a constant velocity but not accelerated, or the origin of the fixed (world) coordinate reference system is placed at the center of mass <math>\mathbf{C}</math>. And distributing the cross product over the sum, we get <math display="block">\begin{align} \boldsymbol{\tau} &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times \mathbf{a}_{\text{tangential},i} + \Delta\mathbf{r}_i\times \mathbf{a}_{\text{centripetal},i}] \\ \boldsymbol{\tau} &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol{\alpha} \times \Delta\mathbf{r}_i) + \Delta\mathbf{r}_i\times (\boldsymbol{\omega} \times \mathbf{v}_{\text{tangential},i})] \\ \boldsymbol{\tau} &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol{\alpha} \times \Delta\mathbf{r}_i) + \Delta\mathbf{r}_i \times (\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \Delta\mathbf{r}_i))] \end{align}</math> Then, the following [[Jacobi identity]] is used on the last term: <math display="block">\begin{align} 0 &= \Delta\mathbf{r}_i\times (\boldsymbol\omega \times(\boldsymbol\omega\times \Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) + (\boldsymbol\omega\times\Delta\mathbf{r}_i)\times(\Delta\mathbf{r}_i\times\boldsymbol\omega)\\ &= \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) + (\boldsymbol\omega\times\Delta\mathbf{r}_i)\times -(\boldsymbol\omega\times\Delta\mathbf{r}_i)\;\ldots\text{ cross-product anticommutativity} \\ &= \Delta\mathbf{r}_i \times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) + -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)]\;\ldots\text{ cross-product scalar multiplication} \\ &= \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) + -[0]\;\ldots\text{ self cross-product} \\ 0 &= \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) + \boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i) \end{align}</math> The result of applying [[Jacobi identity]] can then be continued as follows: <math display="block">\begin{align} \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) &= -[\boldsymbol\omega\times((\boldsymbol\omega\times\Delta\mathbf{r}_i)\times\Delta\mathbf{r}_i)] \\ &= -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)(\boldsymbol\omega\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i(\boldsymbol\omega\cdot(\boldsymbol\omega\times\Delta\mathbf{r}_i))]\;\ldots\text{ vector triple product} \\ &= -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)(\boldsymbol\omega\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i(\Delta\mathbf{r}_i\cdot(\boldsymbol\omega\times\boldsymbol\omega))]\;\ldots\text{ scalar triple product} \\ &= -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)(\boldsymbol\omega\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i(\Delta\mathbf{r}_i\cdot(0))]\;\ldots\text{ self cross-product} \\ &= -[(\boldsymbol\omega\times\Delta\mathbf{r}_i)(\boldsymbol\omega\cdot\Delta\mathbf{r}_i)] \\ &= -[\boldsymbol\omega\times(\Delta\mathbf{r}_i (\boldsymbol\omega\cdot\Delta\mathbf{r}_i))]\;\ldots\text{ cross-product scalar multiplication} \\ &= \boldsymbol\omega\times -(\Delta\mathbf{r}_i (\boldsymbol\omega\cdot\Delta\mathbf{r}_i))\;\ldots\text{ cross-product scalar multiplication} \\ \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i)) &= \boldsymbol\omega\times -(\Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega))\;\ldots\text{ dot-product commutativity} \\ \end{align} </math> The final result can then be substituted to the main proof as follows: <math display="block">\begin{align} \boldsymbol\tau &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \Delta\mathbf{r}_i\times (\boldsymbol\omega\times(\boldsymbol\omega\times\Delta\mathbf{r}_i))] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times -(\Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega))] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{0 - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\}] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{[\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)] - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\}]\;\ldots\;\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) = 0 \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{[\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)] - \boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)\}]\;\ldots\text{ addition associativity} \\ \end{align}</math> <math display="block">\begin{align} \boldsymbol{\tau} &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\} - \boldsymbol\omega\times\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)]\;\ldots\text{ cross-product distributivity over addition} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\} - (\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)(\boldsymbol\omega\times\boldsymbol\omega)]\;\ldots\text{ cross-product scalar multiplication} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\} - (\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i)(0)]\;\ldots\text{ self cross-product} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\boldsymbol\omega(\Delta\mathbf{r}_i\cdot\Delta\mathbf{r}_i) - \Delta\mathbf{r}_i (\Delta\mathbf{r}_i \cdot \boldsymbol\omega)\}] \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\boldsymbol\alpha\times\Delta\mathbf{r}_i) + \boldsymbol\omega\times \{\Delta\mathbf{r}_i \times (\boldsymbol\omega \times \Delta\mathbf{r}_i)\}]\;\ldots\text{ vector triple product} \\ &= \sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times -(\Delta\mathbf{r}_i \times \boldsymbol\alpha) + \boldsymbol\omega\times \{\Delta\mathbf{r}_i \times -(\Delta\mathbf{r}_i \times \boldsymbol\omega)\}]\;\ldots\text{ cross-product anticommutativity} \\ &= -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\Delta\mathbf{r}_i \times \boldsymbol\alpha) + \boldsymbol\omega\times \{\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol\omega)\}]\;\ldots\text{ cross-product scalar multiplication} \\ &= -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\Delta\mathbf{r}_i \times \boldsymbol\alpha)] + -\sum_{i=1}^n m_i [\boldsymbol\omega\times \{\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol\omega)\}]\;\ldots\text{ summation distributivity} \\ \boldsymbol\tau &= -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\Delta\mathbf{r}_i \times \boldsymbol\alpha)] + \boldsymbol\omega\times -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol\omega)]\;\ldots\;\boldsymbol\omega\text{ is not characteristic of particle } P_i \end{align}</math> Notice that for any vector <math>\mathbf{u}</math>, the following holds: <math display="block">\begin{align} -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i\times (\Delta\mathbf{r}_i \times \mathbf{u})] &= -\sum_{i=1}^n m_i \left(\begin{bmatrix} 0 & -\Delta r_{3,i} & \Delta r_{2,i} \\ \Delta r_{3,i} & 0 & -\Delta r_{1,i} \\ -\Delta r_{2,i} & \Delta r_{1,i} & 0 \end{bmatrix} \left(\begin{bmatrix} 0 & -\Delta r_{3,i} & \Delta r_{2,i} \\ \Delta r_{3,i} & 0 & -\Delta r_{1,i} \\ -\Delta r_{2,i} & \Delta r_{1,i} & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \right)\right)\;\ldots\text{ cross-product as matrix multiplication} \\[6pt] &= -\sum_{i=1}^n m_i \left(\begin{bmatrix} 0 & -\Delta r_{3,i} & \Delta r_{2,i} \\ \Delta r_{3,i} & 0 & -\Delta r_{1,i} \\ -\Delta r_{2,i} & \Delta r_{1,i} & 0 \end{bmatrix} \begin{bmatrix} -\Delta r_{3,i}\,u_2 + \Delta r_{2,i}\,u_3 \\ +\Delta r_{3,i}\,u_1 - \Delta r_{1,i}\,u_3 \\ -\Delta r_{2,i}\,u_1 + \Delta r_{1,i}\,u_2 \end{bmatrix}\right) \\[6pt] &= -\sum_{i=1}^n m_i \begin{bmatrix} -\Delta r_{3,i}(+\Delta r_{3,i}\,u_1 - \Delta r_{1,i}\,u_3) + \Delta r_{2,i}(-\Delta r_{2,i}\,u_1 + \Delta r_{1,i}\,u_2) \\ +\Delta r_{3,i}(-\Delta r_{3,i}\,u_2 + \Delta r_{2,i}\,u_3) - \Delta r_{1,i}(-\Delta r_{2,i}\,u_1 + \Delta r_{1,i}\,u_2) \\ -\Delta r_{2,i}(-\Delta r_{3,i}\,u_2 + \Delta r_{2,i}\,u_3) + \Delta r_{1,i}(+\Delta r_{3,i}\,u_1 - \Delta r_{1,i}\,u_3) \end{bmatrix} \\[6pt] &= -\sum_{i=1}^n m_i \begin{bmatrix} -\Delta r_{3,i}^2\,u_1 + \Delta r_{1,i}\Delta r_{3,i}\,u_3 - \Delta r_{2,i}^2\,u_1 + \Delta r_{1,i}\Delta r_{2,i}\,u_2 \\ -\Delta r_{3,i}^2\,u_2 + \Delta r_{2,i}\Delta r_{3,i}\,u_3 + \Delta r_{2,i}\Delta r_{1,i}\,u_1 - \Delta r_{1,i}^2\,u_2 \\ +\Delta r_{3,i}\Delta r_{2,i}\,u_2 - \Delta r_{2,i}^2\,u_3 + \Delta r_{3,i}\Delta r_{1,i}\,u_1 - \Delta r_{1,i}^2\,u_3 \end{bmatrix} \\[6pt] &= -\sum_{i=1}^n m_i \begin{bmatrix} -(\Delta r_{2,i}^2 + \Delta r_{3,i}^2)\,u_1 + \Delta r_{1,i}\Delta r_{2,i}\,u_2 + \Delta r_{1,i}\Delta r_{3,i}\,u_3 \\ +\Delta r_{2,i}\Delta r_{1,i}\,u_1 - (\Delta r_{1,i}^2 + \Delta r_{3,i}^2)\,u_2 + \Delta r_{2,i}\Delta r_{3,i}\,u_3 \\ +\Delta r_{3,i}\Delta r_{1,i}\,u_1 + \Delta r_{3,i}\Delta r_{2,i}\,u_2 - (\Delta r_{1,i}^2 + \Delta r_{2,i}^2)\,u_3 \end{bmatrix} \\[6pt] &= -\sum_{i=1}^n m_i \begin{bmatrix} -(\Delta r_{2,i}^2 + \Delta r_{3,i}^2) & \Delta r_{1,i}\Delta r_{2,i} & \Delta r_{1,i}\Delta r_{3,i} \\ \Delta r_{2,i}\Delta r_{1,i} & -(\Delta r_{1,i}^2 + \Delta r_{3,i}^2) & \Delta r_{2,i}\Delta r_{3,i} \\ \Delta r_{3,i}\Delta r_{1,i} & \Delta r_{3,i}\Delta r_{2,i} & -(\Delta r_{1,i}^2 + \Delta r_{2,i}^2) \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \\ &= -\sum_{i=1}^n m_i [\Delta r_i]^2 \mathbf{u} \\[6pt] -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \mathbf{u})] &= \left(-\sum_{i=1}^n m_i [\Delta r_i]^2\right) \mathbf{u}\;\ldots\;\mathbf{u}\text{ is not characteristic of } P_i \end{align}</math> Finally, the result is used to complete the main proof as follows: <math display="block">\begin{align} \boldsymbol{\tau} &= -\sum_{i=1}^n m_i [\Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol{\alpha})] + \boldsymbol{\omega} \times -\sum_{i=1}^n m_i \Delta\mathbf{r}_i \times (\Delta\mathbf{r}_i \times \boldsymbol{\omega})] \\ &= \left(-\sum_{i=1}^n m_i [\Delta r_i]^2\right) \boldsymbol{\alpha} + \boldsymbol{\omega} \times \left(-\sum_{i=1}^n m_i [\Delta r_i]^2\right) \boldsymbol{\omega} \end{align}</math> }} Thus, the resultant torque on the rigid system of particles is given by <math display="block">\boldsymbol{\tau} = \mathbf{I}_\mathbf{C} \boldsymbol{\alpha} + \boldsymbol{\omega} \times \mathbf{I}_\mathbf{C} \boldsymbol{\omega},</math> where <math>\mathbf{I_C}</math> is the inertia matrix relative to the center of mass. === Parallel axis theorem === {{Main|Parallel axis theorem}} The inertia matrix of a body depends on the choice of the reference point. There is a useful relationship between the inertia matrix relative to the center of mass <math>\mathbf{C}</math> and the inertia matrix relative to another point <math>\mathbf{R}</math>. This relationship is called the parallel axis theorem.<ref name="Marion 1995"/><ref name="Kane"/> Consider the inertia matrix <math>\mathbf{I_R}</math> obtained for a rigid system of particles measured relative to a reference point <math>\mathbf{R}</math>, given by <math display="block">\mathbf{I}_\mathbf{R} = -\sum_{i=1}^n m_i\left[\mathbf{r}_i - \mathbf{R}\right]^2.</math> Let <math>\mathbf{C}</math> be the center of mass of the rigid system, then <math display="block">\mathbf{R} = (\mathbf{R} - \mathbf{C}) + \mathbf{C} = \mathbf{d} + \mathbf{C},</math> where <math>\mathbf{d}</math> is the vector from the center of mass <math>\mathbf{C}</math> to the reference point <math>\mathbf{R}</math>. Use this equation to compute the inertia matrix, <math display="block"> \mathbf{I}_\mathbf{R} = -\sum_{i=1}^n m_i[\mathbf{r}_i - \left(\mathbf{C} + \mathbf{d}\right)]^2 = -\sum_{i=1}^n m_i[\left(\mathbf{r}_i - \mathbf{C}\right) - \mathbf{d}]^2. </math> Distribute over the cross product to obtain <math display="block"> \mathbf{I}_\mathbf{R} = - \left(\sum_{i=1}^n m_i [\mathbf{r}_i - \mathbf{C}]^2\right) + \left(\sum_{i=1}^n m_i [\mathbf{r}_i - \mathbf{C}]\right)[\mathbf{d}] + [\mathbf{d}]\left(\sum_{i=1}^n m_i [\mathbf{r}_i - \mathbf{C}]\right) - \left(\sum_{i=1}^n m_i\right) [\mathbf{d}]^2. </math> The first term is the inertia matrix <math>\mathbf{I_C}</math> relative to the center of mass. The second and third terms are zero by definition of the center of mass <math>\mathbf{C}</math>. And the last term is the total mass of the system multiplied by the square of the skew-symmetric matrix <math>[\mathbf{d}]</math> constructed from <math>\mathbf{d}</math>. The result is the parallel axis theorem, <math display="block">\mathbf{I}_\mathbf{R} = \mathbf{I}_\mathbf{C} - M[\mathbf{d}]^2,</math> where <math>\mathbf{d}</math> is the vector from the center of mass <math>\mathbf{C}</math> to the reference point <math>\mathbf{R}</math>. '''Note on the minus sign''': By using the skew symmetric matrix of position vectors relative to the reference point, the inertia matrix of each particle has the form <math>-m\left[\mathbf{r}\right]^2</math>, which is similar to the <math>mr^2</math> that appears in planar movement. However, to make this to work out correctly a minus sign is needed. This minus sign can be absorbed into the term <math>m\left[\mathbf{r}\right]^\mathsf{T} \left[\mathbf{r}\right]</math>, if desired, by using the skew-symmetry property of <math>[\mathbf{r}]</math>. === Scalar moment of inertia in a plane === The scalar moment of inertia, <math>I_L</math>, of a body about a specified axis whose direction is specified by the unit vector <math>\mathbf{\hat{k}}</math> and passes through the body at a point <math>\mathbf{R}</math> is as follows:<ref name="Kane"/> <math display="block">I_L = \mathbf{\hat{k}} \cdot \left(-\sum_{i=1}^N m_i \left[\Delta\mathbf{r}_i\right]^2 \right) \mathbf{\hat{k}} = \mathbf{\hat{k}} \cdot \mathbf{I}_\mathbf{R} \mathbf{\hat{k}} = \mathbf{\hat{k}}^\mathsf{T} \mathbf{I}_\mathbf{R} \mathbf{\hat{k}},</math> where <math>\mathbf{I_R}</math> is the moment of inertia matrix of the system relative to the reference point <math>\mathbf{R}</math>, and <math>[\Delta\mathbf{r}_i]</math> is the skew symmetric matrix obtained from the vector <math>\Delta\mathbf{r}_i = \mathbf{r}_i - \mathbf{R}</math>. This is derived as follows. Let a rigid assembly of <math>n</math> particles, <math>P_i, i = 1, \dots, n</math>, have coordinates <math>\mathbf{r}_i</math>. Choose <math>\mathbf{R}</math> as a reference point and compute the moment of inertia around a line L defined by the unit vector <math>\mathbf{\hat{k}}</math> through the reference point <math>\mathbf{R}</math>, <math>\mathbf{L}(t) = \mathbf{R} + t\mathbf{\hat{k}}</math>. The perpendicular vector from this line to the particle <math>P_i</math> is obtained from <math>\Delta\mathbf{r}_i</math> by removing the component that projects onto <math>\mathbf{\hat{k}}</math>. <math display="block"> \Delta\mathbf{r}_i^\perp = \Delta\mathbf{r}_i - \left(\mathbf{\hat{k}} \cdot \Delta\mathbf{r}_i\right)\mathbf{\hat{k}} = \left(\mathbf{E} - \mathbf{\hat{k}}\mathbf{\hat{k}}^\mathsf{T}\right) \Delta\mathbf{r}_i, </math> where <math>\mathbf{E}</math> is the identity matrix, so as to avoid confusion with the inertia matrix, and <math>\mathbf{\hat{k}}\mathbf{\hat{k}}^\mathsf{T}</math> is the outer product matrix formed from the unit vector <math>\mathbf{\hat{k}}</math> along the line <math>L</math>. To relate this scalar moment of inertia to the inertia matrix of the body, introduce the skew-symmetric matrix <math>\left[\mathbf{\hat{k}}\right]</math> such that <math>\left[\mathbf{\hat{k}}\right]\mathbf{y} = \mathbf{\hat{k}} \times \mathbf{y}</math>, then we have the identity <math display="block"> -\left[\mathbf{\hat{k}}\right]^2 \equiv \left|\mathbf{\hat{k}}\right|^2\left(\mathbf{E} - \mathbf{\hat{k}}\mathbf{\hat{k}}^\mathsf{T}\right) = \mathbf{E} - \mathbf{\hat{k}}\mathbf{\hat{k}}^\mathsf{T}, </math> noting that <math>\mathbf{\hat{k}}</math> is a unit vector. The magnitude squared of the perpendicular vector is <math display="block">\begin{align} \left|\Delta\mathbf{r}_i^\perp\right|^2 &= \left(-\left[\mathbf{\hat{k}}\right]^2 \Delta\mathbf{r}_i\right) \cdot \left(-\left[\mathbf{\hat{k}}\right]^2 \Delta\mathbf{r}_i\right) \\ &= \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \cdot \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \end{align}</math> The simplification of this equation uses the triple scalar product identity <math display="block"> \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \cdot \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \equiv \left(\left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \times \mathbf{\hat{k}}\right) \cdot \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right), </math> where the dot and the cross products have been interchanged. Exchanging products, and simplifying by noting that <math>\Delta\mathbf{r}_i</math> and <math>\mathbf{\hat{k}}</math> are orthogonal: <math display="block">\begin{align} &\left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \cdot \left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \\ ={} &\left(\left(\mathbf{\hat{k}} \times \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right)\right) \times \mathbf{\hat{k}}\right) \cdot \left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right) \\ ={} &\left(\mathbf{\hat{k}} \times \Delta\mathbf{r}_i\right) \cdot \left(-\Delta\mathbf{r}_i \times \mathbf{\hat{k}}\right) \\ ={} &-\mathbf{\hat{k}} \cdot \left(\Delta\mathbf{r}_i \times \Delta\mathbf{r}_i \times \mathbf{\hat{k}}\right) \\ ={} &-\mathbf{\hat{k}} \cdot \left[\Delta\mathbf{r}_i\right]^2 \mathbf{\hat{k}}. \end{align}</math> Thus, the moment of inertia around the line <math>L</math> through <math>\mathbf{R}</math> in the direction <math>\mathbf{\hat{k}}</math> is obtained from the calculation <math display="block">\begin{align} I_L &= \sum_{i=1}^N m_i \left|\Delta\mathbf{r}_i^\perp\right|^2 \\ &= -\sum_{i=1}^N m_i \mathbf{\hat{k}} \cdot \left[\Delta\mathbf{r}_i\right]^2\mathbf{\hat{k}} = \mathbf{\hat{k}} \cdot \left(-\sum_{i=1}^N m_i \left[\Delta\mathbf{r}_i\right]^2 \right) \mathbf{\hat{k}} \\ &= \mathbf{\hat{k}} \cdot \mathbf{I}_\mathbf{R} \mathbf{\hat{k}} = \mathbf{\hat{k}}^\mathsf{T} \mathbf{I}_\mathbf{R} \mathbf{\hat{k}}, \end{align}</math> where <math>\mathbf{I_R}</math> is the moment of inertia matrix of the system relative to the reference point <math>\mathbf{R}</math>. This shows that the inertia matrix can be used to calculate the moment of inertia of a body around any specified rotation axis in the body.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Moment of inertia
(section)
Add topic