Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Linear independence
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== ===Affine independence=== {{See also|Affine space}} A set of vectors is said to be '''affinely dependent''' if at least one of the vectors in the set can be defined as an [[affine combination]] of the others. Otherwise, the set is called '''affinely independent'''. Any affine combination is a linear combination; therefore every affinely dependent set is linearly dependent. Contrapositively, every linearly independent set is affinely independent. Note that an affinely independent set is not necessarily linearly independent. Consider a set of <math>m</math> vectors <math>\mathbf{v}_1, \ldots, \mathbf{v}_m</math> of size <math>n</math> each, and consider the set of <math>m</math> augmented vectors <math display="inline">\left(\left[\begin{smallmatrix} 1 \\ \mathbf{v}_1\end{smallmatrix}\right], \ldots, \left[\begin{smallmatrix}1 \\ \mathbf{v}_m\end{smallmatrix}\right]\right)</math> of size <math>n + 1</math> each. The original vectors are affinely independent if and only if the augmented vectors are linearly independent.<ref name="lp">{{Cite Lovasz Plummer}}</ref>{{Rp|256}} ===Linearly independent vector subspaces=== Two vector subspaces <math>M</math> and <math>N</math> of a vector space <math>X</math> are said to be {{em|linearly independent}} if <math>M \cap N = \{0\}.</math><ref name="BNFA">{{Bachman Narici Functional Analysis 2nd Edition}} pp. 3β7</ref> More generally, a collection <math>M_1, \ldots, M_d</math> of subspaces of <math>X</math> are said to be {{em|linearly independent}} if <math display=inline>M_i \cap \sum_{k \neq i} M_k = \{0\}</math> for every index <math>i,</math> where <math display=inline>\sum_{k \neq i} M_k = \Big\{m_1 + \cdots + m_{i-1} + m_{i+1} + \cdots + m_d : m_k \in M_k \text{ for all } k\Big\} = \operatorname{span} \bigcup_{k \in \{1,\ldots,i-1,i+1,\ldots,d\}} M_k.</math><ref name="BNFA" /> The vector space <math>X</math> is said to be a {{em|[[direct sum]]}} of <math>M_1, \ldots, M_d</math> if these subspaces are linearly independent and <math>M_1 + \cdots + M_d = X.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Linear independence
(section)
Add topic