Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Forcing (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Logical explanation == By [[GΓΆdel's second incompleteness theorem]], one cannot prove the consistency of any sufficiently strong formal theory, such as <math> \mathsf{ZFC} </math>, using only the axioms of the theory itself, unless the theory is inconsistent. Consequently, mathematicians do not attempt to prove the consistency of <math> \mathsf{ZFC} </math> using only the axioms of <math> \mathsf{ZFC} </math>, or to prove that <math> \mathsf{ZFC} + H </math> is consistent for any hypothesis <math> H </math> using only <math> \mathsf{ZFC} + H </math>. For this reason, the aim of a consistency proof is to prove the consistency of <math> \mathsf{ZFC} + H </math> relative to the consistency of <math> \mathsf{ZFC} </math>. Such problems are known as problems of '''relative consistency''', one of which proves {{NumBlk||<math display="block"> \mathsf{ZFC} \vdash \operatorname{Con}(\mathsf{ZFC}) \rightarrow \operatorname{Con}(\mathsf{ZFC} + H). </math>|{{EquationRef|β}}}} The general schema of relative consistency proofs follows. As any proof is finite, it uses only a finite number of axioms: : <math> \mathsf{ZFC} + \lnot \operatorname{Con}(\mathsf{ZFC} + H) \vdash (\exists T)(\operatorname{Fin}(T) \land T \subseteq \mathsf{ZFC} \land (T \vdash \lnot H)). </math> For any given proof, <math> \mathsf{ZFC} </math> can verify the validity of this proof. This is provable by induction on the length of the proof. : <math> \mathsf{ZFC} \vdash (\forall T)((T \vdash \lnot H) \rightarrow (\mathsf{ZFC} \vdash (T \vdash \lnot H))). </math> Then resolve : <math> \mathsf{ZFC} + \lnot \operatorname{Con}(\mathsf{ZFC} + H) \vdash (\exists T)(\operatorname{Fin}(T) \land T \subseteq \mathsf{ZFC} \land (\mathsf{ZFC} \vdash (T \vdash \lnot H))). </math> By proving the following {{NumBlk|| <math display="block"> \mathsf{ZFC} \vdash (\forall T)(\operatorname{Fin}(T) \land T \subseteq \mathsf{ZFC} \rightarrow (\mathsf{ZFC} \vdash \operatorname{Con}(T + H))), </math>|{{EquationRef|ββ}}}} it can be concluded that : <math> \mathsf{ZFC} + \lnot \operatorname{Con}(\mathsf{ZFC} + H) \vdash (\exists T)(\operatorname{Fin}(T) \land T \subseteq \mathsf{ZFC} \land (\mathsf{ZFC} \vdash (T \vdash \lnot H)) \land (\mathsf{ZFC} \vdash \operatorname{Con}(T + H))), </math> which is equivalent to : <math> \mathsf{ZFC} + \lnot \operatorname{Con}(\mathsf{ZFC} + H) \vdash \lnot \operatorname{Con}(\mathsf{ZFC}), </math> which gives (*). The core of the relative consistency proof is proving (**). A <math> \mathsf{ZFC} </math> proof of <math> \operatorname{Con}(T + H) </math> can be constructed for any given finite subset <math> T </math> of the <math> \mathsf{ZFC} </math> axioms (by <math> \mathsf{ZFC} </math> instruments of course). (No universal proof of <math> \operatorname{Con}(T + H) </math> of course.) In <math> \mathsf{ZFC} </math>, it is provable that for any condition <math> p </math>, the set of formulas (evaluated by names) forced by <math> p </math> is deductively closed. Furthermore, for any <math> \mathsf{ZFC} </math> axiom, <math> \mathsf{ZFC} </math> proves that this axiom is forced by <math> \mathbf{1} </math>. Then it suffices to prove that there is at least one condition that forces <math> H </math>. In the case of Boolean-valued forcing, the procedure is similar: proving that the Boolean value of <math> H </math> is not <math> \mathbf{0} </math>. Another approach uses the Reflection Theorem. For any given finite set of <math> \mathsf{ZFC} </math> axioms, there is a <math> \mathsf{ZFC} </math> proof that this set of axioms has a countable transitive model. For any given finite set <math> T </math> of <math> \mathsf{ZFC} </math> axioms, there is a finite set <math> T' </math> of <math> \mathsf{ZFC} </math> axioms such that <math> \mathsf{ZFC} </math> proves that if a countable transitive model <math> M </math> satisfies <math> T' </math>, then <math> M[G] </math> satisfies <math> T </math>. By proving that there is finite set <math> T'' </math> of <math> \mathsf{ZFC} </math> axioms such that if a countable transitive model <math> M </math> satisfies <math> T'' </math>, then <math> M[G] </math> satisfies the hypothesis <math> H </math>. Then, for any given finite set <math> T </math> of <math> \mathsf{ZFC} </math> axioms, <math> \mathsf{ZFC} </math> proves <math> \operatorname{Con}(T + H) </math>. Sometimes in (**), a stronger theory <math> S </math> than <math> \mathsf{ZFC} </math> is used for proving <math> \operatorname{Con}(T + H) </math>. Then we have proof of the consistency of <math> \mathsf{ZFC} + H </math> relative to the consistency of <math> S </math>. Note that <math> \mathsf{ZFC} \vdash \operatorname{Con}(\mathsf{ZFC}) \leftrightarrow \operatorname{Con}(\mathsf{ZFL}) </math>, where <math> \mathsf{ZFL} </math> is <math> \mathsf{ZF} + V = L </math> (the axiom of constructibility).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Forcing (mathematics)
(section)
Add topic