Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Calculus of variations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Snell's law ==== There is a discontinuity of the refractive index when light enters or leaves a lens. Let <math display="block">n(x,y) = \begin{cases} n_{(-)} & \text{if} \quad x<0, \\ n_{(+)} & \text{if} \quad x>0, \end{cases}</math> where <math>n_{(-)}</math> and <math>n_{(+)}</math> are constants. Then the Euler–Lagrange equation holds as before in the region where <math>x < 0</math> or <math>x > 0,</math> and in fact the path is a straight line there, since the refractive index is constant. At the <math>x = 0,</math> <math>f</math> must be continuous, but <math>f'</math> may be discontinuous. After integration by parts in the separate regions and using the Euler–Lagrange equations, the first variation takes the form <math display="block">\delta A[f_0,f_1] = f_1(0)\left[ n_{(-)}\frac{f_0'(0^-)}{\sqrt{1 + f_0'(0^-)^2}} - n_{(+)}\frac{f_0'(0^+)}{\sqrt{1 + f_0'(0^+)^2}} \right].</math> The factor multiplying <math>n_{(-)}</math> is the sine of angle of the incident ray with the <math>x</math> axis, and the factor multiplying <math>n_{(+)}</math> is the sine of angle of the refracted ray with the <math>x</math> axis. [[Snell's law]] for refraction requires that these terms be equal. As this calculation demonstrates, Snell's law is equivalent to vanishing of the first variation of the optical path length.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Calculus of variations
(section)
Add topic