Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bremsstrahlung
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Quantum mechanical description == The complete quantum mechanical description was first performed by Bethe and Heitler.<ref>{{cite journal |last1=Bethe |first1=H. A. |last2=Heitler |first2=W. |year=1934 |title=On the stopping of fast particles and on the creation of positive electrons |journal= Proceedings of the Royal Society A |volume=146 |issue= 856|pages=83โ112 |doi=10.1098/rspa.1934.0140 |bibcode=1934RSPSA.146...83B |doi-access=free }}</ref> They assumed plane waves for electrons which scatter at the nucleus of an atom, and derived a cross section which relates the complete geometry of that process to the frequency of the emitted photon. The quadruply differential cross section, which shows a quantum mechanical symmetry to [[pair production]], is : <math>\begin{align} d^4\sigma ={} &\frac{Z^2 \alpha_\text{fine}^3 \hbar^2}{(2\pi)^2}\frac{\left|\mathbf{p}_f\right|}{\left|\mathbf{p}_i\right|} \frac{d\omega}{\omega}\frac{d\Omega_i \, d\Omega_f \, d\Phi}{\left|\mathbf{q}\right|^4} \\ &{}\times \left[ \frac{\mathbf{p}_f^2\sin^2\Theta_f}{\left(E_f - c\left|\mathbf{p}_f\right| \cos\Theta_f\right)^2}\left(4E_i^2 - c^2\mathbf{q}^2\right) + \frac{\mathbf{p}_i^2\sin^2\Theta_i}{\left(E_i - c\left|\mathbf{p}_i\right| \cos\Theta_i\right)^2}\left(4E_f^2 - c^2\mathbf{q}^2\right) \right. \\ & {} \qquad+ 2\hbar^2\omega^2 \frac {\mathbf{p}_i^2 \sin^2\Theta_i + \mathbf{p}_f^2 \sin^2\Theta_f} {(E_f - c\left|\mathbf{p}_f\right| \cos\Theta_f)\left(E_i - c\left|\mathbf{p}_i\right| \cos\Theta_i\right)} \\ & {} \qquad- 2\left. \frac {\left|\mathbf{p}_i\right| \left|\mathbf{p}_f\right| \sin\Theta_i \sin\Theta_f \cos\Phi} {\left(E_f - c\left|\mathbf{p}_f\right| \cos\Theta_f\right)\left(E_i - c\left|\mathbf{p}_i\right|\cos\Theta_i\right)} \left(2E_i^2 + 2E_f^2 - c^2\mathbf{q}^2\right) \right], \end{align}</math> where <math>Z</math> is the [[atomic number]], <math>\alpha_\text{fine}\approx 1/137</math> the [[fine-structure constant]], <math>\hbar</math> the [[reduced Planck constant]] and <math>c</math> the [[speed of light]]. The kinetic energy <math>E_{\text{kin},i/f}</math> of the electron in the initial and final state is connected to its total energy <math>E_{i,f}</math> or its [[momenta]] <math>\mathbf{p}_{i,f}</math> via <math display="block"> E_{i, f} = E_{\text{kin}, i/f} + m_\text{e} c^2 = \sqrt{m_\text{e}^2 c^4 + \mathbf{p}_{i, f}^2 c^2}, </math> where <math>m_\text{e}</math> is the [[mass of an electron]]. [[Conservation of energy]] gives <math display="block"> E_f = E_i - \hbar\omega, </math> where <math> \hbar\omega </math> is the photon energy. The directions of the emitted photon and the scattered electron are given by <math display="block">\begin{align} \Theta_i &= \sphericalangle(\mathbf{p}_i, \mathbf{k}),\\ \Theta_f &= \sphericalangle(\mathbf{p}_f, \mathbf{k}),\\ \Phi &= \text{Angle between the planes } (\mathbf{p}_i, \mathbf{k}) \text{ and } (\mathbf{p}_f, \mathbf{k}), \end{align}</math> where <math>\mathbf{k}</math> is the momentum of the photon. The differentials are given as <math display="block">\begin{align} d\Omega_i &= \sin\Theta_i\ d\Theta_i,\\ d\Omega_f &= \sin\Theta_f\ d\Theta_f. \end{align}</math> The [[absolute value]] of the [[virtual photon]] between the nucleus and electron is : <math>\begin{align} -\mathbf{q}^2 ={} & -\left|\mathbf{p}_i\right|^2 - \left|\mathbf{p}_f\right|^2 - \left(\frac{\hbar}{c}\omega\right)^2 + 2\left|\mathbf{p}_i\right|\frac{\hbar}{c} \omega\cos\Theta_i - 2\left|\mathbf{p}_f\right|\frac{\hbar}{c} \omega\cos\Theta_f \\ & {} + 2\left|\mathbf{p}_i\right| \left|\mathbf{p}_f\right| \left(\cos\Theta_f\cos\Theta_i + \sin\Theta_f\sin\Theta_i\cos\Phi\right). \end{align}</math> The range of validity is given by the Born approximation <math display="block"> v \gg \frac{Zc}{137} </math> where this relation has to be fulfilled for the velocity <math> v </math> of the electron in the initial and final state. For practical applications (e.g. in [[Monte Carlo N-Particle Transport Code|Monte Carlo codes]]) it can be interesting to focus on the relation between the frequency <math>\omega</math> of the emitted photon and the angle between this photon and the incident electron. Kรถhn and [[Ute Ebert|Ebert]] integrated the quadruply differential cross section by Bethe and Heitler over <math>\Phi</math> and <math>\Theta_f</math> and obtained:<ref>{{cite journal |last1=Kรถhn |first1=C. |last2=Ebert |first2=U.|author2-link= Ute Ebert |title=Angular distribution of bremsstrahlung photons and of positrons for calculations of terrestrial gamma-ray flashes and positron beams |journal= Atmospheric Research|year=2014 |volume=135โ136 |pages=432โ465 |doi=10.1016/j.atmosres.2013.03.012 |bibcode=2014AtmRe.135..432K |arxiv=1202.4879 |s2cid=10679475 }}</ref> <math display="block"> \frac{d^2\sigma (E_i, \omega, \Theta_i)}{d\omega \, d\Omega_i} = \sum\limits_{j=1}^6 I_j </math> with : <math>\begin{align} I_1 ={} &\frac{2\pi A}{\sqrt{\Delta_2^2 + 4p_i^2 p_f^2 \sin^2\Theta_i}} \ln\left(\frac { \Delta_2^2 + 4p_i^2p_f^2\sin^2\Theta_i - \sqrt{\Delta_2^2 + 4p_i^2p_f^2\sin^2\Theta_i}\left(\Delta_1 + \Delta_2\right) + \Delta_1\Delta_2} {-\Delta_2^2 - 4p_i^2p_f^2\sin^2\Theta_i - \sqrt{\Delta_2^2 + 4p_i^2p_f^2\sin^2\Theta_i}\left(\Delta_1 - \Delta_2\right) + \Delta_1\Delta_2} \right) \\ & {} \times\left[ 1 + \frac{c\Delta_2}{p_f\left(E_i - cp_i\cos\Theta_i\right)} - \frac{p_i^2 c^2 \sin^2\Theta_i}{\left(E_i - cp_i\cos\Theta_i\right)^2} - \frac{2\hbar^2\omega^2 p_f \Delta_2}{c\left(E_i - cp_i\cos\Theta_i\right)\left(\Delta_2^2 + 4p_i^2 p_f^2 \sin^2\Theta_i\right)} \right], \\ I_2 ={} &-\frac{2\pi Ac}{p_f\left(E_i - cp_i\cos\Theta_i\right)}\ln\left(\frac{E_f + p_fc}{E_f - p_fc}\right), \\ I_3 = {} & \frac{2\pi A}{\sqrt{\left(\Delta_2E_f + \Delta_1 p_f c\right)^4 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i}} \times \ln\left[\left(\left[E_f + p_fc\right]\right.\right. \\ & \left.\left[4p_i^2 p_f^2 \sin^2\Theta_i\left(E_f - p_f c\right) + \left(\Delta_1 + \Delta_2\right)\left(\left[\Delta_2 E_f + \Delta_1 p_f c\right] - \sqrt{\left[\Delta_2 E_f + \Delta_1 p_f c\right]^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i}\right)\right]\right) \\ &\left[\left(E_f - p_f c\right)\left(4p_i^2 p_f^2 \sin^2\Theta_i\left[-E_f - p_f c\right]\right.\right. \\ & {} + \left.\left.\left(\Delta_1 - \Delta_2\right)\left(\left[\Delta_2 E_f + \Delta_1 p_f c\right] - \sqrt{\left(\Delta_2 E_f + \Delta_1 p_f c\right)^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i}\right]\right)\right]^{-1} \\ & {} \times \left[-\frac{ \left(\Delta_2^2 + 4p_i^2 p_f^2 \sin^2\Theta_i\right)\left(E_f^3 + E_f p_f^2 c^2\right) + p_f c\left(2\left[\Delta_1^2 - 4p_i^2 p_f^2 \sin^2\Theta_i\right]E_f p_f c + \Delta_1 \Delta_2\left[3E_f^2 + p_f^2 c^2\right]\right) } {\left(\Delta_2E_f + \Delta_1 p_f c\right)^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i} \right.\\ & {} -\frac{c\left(\Delta_2 E_f + \Delta_1 p_f c\right)}{p_f\left(E_i - cp_i \cos\Theta_i\right)} - \frac{ 4E_i^2 p_f^2 \left(2\left[\Delta_2 E_f + \Delta_1 p_f c\right]^2 - 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i\right)\left(\Delta_1 E_f + \Delta_2 p_f c\right) } {\left(\left[\Delta_2 E_f + \Delta_1 p_f c\right]^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i\right)^2} \\ & {} + \left.\frac{ 8p_i^2 p_f^2 m^2 c^4 \sin^2\Theta_i\left(E_i^2 + E_f^2\right) - 2\hbar^2\omega^2 p_i^2 \sin^2\Theta_i p_f c\left(\Delta_2 E_f + \Delta_1 p_f c\right) + 2\hbar^2 \omega^2 p_f m^2 c^3\left(\Delta_2 E_f + \Delta_1 p_f c\right) } {\left(E_i - cp_i\cos\Theta_i\right)\left(\left[\Delta_2 E_f + \Delta_1 p_f c\right]^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i\right)}\right], \\ I_4 ={} & {} -\frac {4\pi A p_f c\left(\Delta_2 E_f + \Delta_1 p_f c\right)} {\left(\Delta_2E_f + \Delta_1 p_f c\right)^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i} - \frac {16\pi E_i^2 p_f^2 A\left(\Delta_2E_f + \Delta_1 p_f c\right)^2} {\left(\left[\Delta_2 E_f + \Delta_1 p_f c\right]^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i\right)^2}, \\ I_5 ={} & \frac {4\pi A} { \left(-\Delta_2^2 + \Delta_1^2 - 4 p_i^2 p_f^2 \sin^2\Theta_i\right) \left(\left[\Delta_2 E_f + \Delta_1 p_f c\right]^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i\right) } \\ & {} \times\left[\frac{\hbar^2 \omega^2 p_f^2}{E_i - cp_i\cos\Theta_i}\right.\\ & {} \times\frac{ E_f\left(2\Delta_2^2\left[\Delta_2^2 - \Delta_1^2\right] + 8p_i^2 p_f^2 \sin^2\Theta_i\left[\Delta_2^2 + \Delta_1^2\right]\right) + p_f c\left(2\Delta_1\Delta_2\left[\Delta_2^2 - \Delta_1^2\right] + 16\Delta_1\Delta_2 p_i^2 p_f^2 \sin^2\Theta_i\right) } {\Delta_2^2 + 4p_i^2 p_f^2 \sin^2\Theta_i} \\ & {} + \frac {2\hbar^2 \omega^2 p_i^2 \sin^2\Theta_i \left(2\Delta_1\Delta_2 p_f c + 2\Delta_2^2 E_f + 8p_i^2 p_f^2 \sin^2\Theta_i E_f\right)} {E_i - cp_i\cos\Theta_i} \\ & {} + \frac {2E_i^2 p_f^2 \left( 2\left[\Delta_2^2 - \Delta_1^2\right]\left[\Delta_2 E_f + \Delta_1 p_f c\right]^2 + 8p_i^2 p_f^2 \sin^2\Theta_i\left[\left(\Delta_1^2 + \Delta_2^2\right)\left(E_f^2 + p_f^2 c^2\right) + 4\Delta_1\Delta_2 E_f p_f c\right] \right) } {\left(\Delta_2 E_f + \Delta_1 p_f c\right)^2 + 4m^2 c^4 p_i^2 p_f^2 \sin^2\Theta_i} \\ & {} + \left.\frac{8p_i^2 p_f^2 \sin^2\Theta_i\left(E_i^2 + E_f^2\right)\left(\Delta_2p_fc + \Delta_1 E_f\right)}{E_i - cp_i\cos\Theta_i}\right], \\ I_6 ={} & \frac{16\pi E_f^2 p_i^2 \sin^2\Theta_i A}{\left(E_i - cp_i\cos\Theta_i\right)^2 \left(-\Delta_2^2 + \Delta_1^2 - 4p_i^2 p_f^2 \sin^2\Theta_i\right)}, \end{align}</math> and : <math>\begin{align} A &= \frac{Z^2\alpha_\text{fine}^3}{(2\pi)^2} \frac{\left|\mathbf{p}_f\right|}{\left|\mathbf{p}_i\right|} \frac{\hbar^2}{\omega} \\ \Delta_1 &= -\mathbf{p}_i^2 - \mathbf{p}_f^2 - \left(\frac{\hbar}{c}\omega\right)^2 + 2\frac{\hbar}{c} \omega\left|\mathbf{p}_i\right|\cos\Theta_i, \\ \Delta_2 &= -2\frac{\hbar}{c}\omega\left|\mathbf{p}_f\right| + 2\left|\mathbf{p}_i\right|\left|\mathbf{p}_f\right|\cos\Theta_i. \end{align}</math> However, a much simpler expression for the same integral can be found in <ref>{{cite journal |first1=H. W. |last1=Koch |first2=J. W. |last2=Motz |title=Bremsstrahlung Cross-Section Formulas and Related Data |journal= Reviews of Modern Physics|volume=31 |issue= 4|year=1959 |pages=920โ955 |doi=10.1103/RevModPhys.31.920 |bibcode=1959RvMP...31..920K }}</ref> (Eq. 2BN) and in <ref>{{cite journal |first1=R. L. |last1=Gluckstern | first2=M. H. Jr. |last2=Hull |title=Polarization Dependence of the Integrated Bremsstrahlung Cross Section |journal= Physical Review|volume=90 |issue= 6|pages=1030โ1035 |year=1953 |doi=10.1103/PhysRev.90.1030 |bibcode=1953PhRv...90.1030G }}</ref> (Eq. 4.1). An analysis of the doubly differential cross section above shows that electrons whose kinetic energy is larger than the rest energy (511 keV) emit photons in forward direction while electrons with a small energy emit photons isotropically.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bremsstrahlung
(section)
Add topic