Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Blood pressure
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Hemodynamics=== {{main|Hemodynamics}} A simple view of the [[hemodynamics]] of systemic arterial pressure is based around [[mean arterial pressure]] (MAP) and pulse pressure. Most influences on blood pressure can be understood in terms of their effect on [[cardiac output]],<ref>{{cite journal | vauthors = Guyton AC | title = The relationship of cardiac output and arterial pressure control | journal = Circulation | volume = 64 | issue = 6 | pages = 1079–1088 | date = December 1981 | pmid = 6794930 | doi = 10.1161/01.cir.64.6.1079 | doi-access = free }}</ref> [[Vascular resistance|systemic vascular resistance]], or [[arterial stiffness]] (the inverse of arterial compliance). Cardiac output is the product of stroke volume and heart rate. Stroke volume is influenced by 1) the [[end-diastolic volume]] or filling pressure of the ventricle acting via the [[Frank–Starling law|Frank–Starling mechanism]]—this is influenced by [[blood volume]]; 2) [[Myocardial contractility|cardiac contractility]]; and 3) [[afterload]], the impedance to blood flow presented by the circulation.<ref>{{cite journal | vauthors = Milnor WR | title = Arterial impedance as ventricular afterload | journal = Circulation Research | volume = 36 | issue = 5 | pages = 565–570 | date = May 1975 | pmid = 1122568 | doi = 10.1161/01.res.36.5.565 | doi-access = free }}</ref> In the short-term, the greater the blood volume, the higher the cardiac output. This has been proposed as an explanation of the relationship between high dietary salt intake and increased blood pressure; however, responses to increased dietary sodium intake vary between individuals and are highly dependent on autonomic nervous system responses and the [[renin–angiotensin system]],<ref>{{cite journal | vauthors = Freis ED | title = Salt, volume and the prevention of hypertension | journal = Circulation | volume = 53 | issue = 4 | pages = 589–595 | date = April 1976 | pmid = 767020 | doi = 10.1161/01.CIR.53.4.589 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Caplea A, Seachrist D, Dunphy G, Ely D | title = Sodium-induced rise in blood pressure is suppressed by androgen receptor blockade | journal = American Journal of Physiology. Heart and Circulatory Physiology | volume = 280 | issue = 4 | pages = H1793–H1801 | date = April 2001 | pmid = 11247793 | doi = 10.1152/ajpheart.2001.280.4.H1793 | series = 4 | s2cid = 12069178 }}</ref><ref>{{cite journal | vauthors = Houston MC | title = Sodium and hypertension. A review | journal = Archives of Internal Medicine | volume = 146 | issue = 1 | pages = 179–185 | date = January 1986 | pmid = 3510595 | doi = 10.1001/archinte.1986.00360130217028 | series = 1 }}</ref> changes in [[Plasma osmolality|plasma osmolarity]] may also be important.<ref>{{cite journal | vauthors = Kanbay M, Aslan G, Afsar B, Dagel T, Siriopol D, Kuwabara M, Incir S, Camkiran V, Rodriguez-Iturbe B, Lanaspa MA, Covic A, Johnson RJ | display-authors = 6 | title = Acute effects of salt on blood pressure are mediated by serum osmolality | journal = Journal of Clinical Hypertension | volume = 20 | issue = 10 | pages = 1447–1454 | date = October 2018 | pmid = 30232829 | pmc = 8030773 | doi = 10.1111/jch.13374 | doi-access = free }}</ref> In the longer-term the relationship between volume and blood pressure is more complex.<ref>{{cite journal | vauthors = Titze J, Luft FC | title = Speculations on salt and the genesis of arterial hypertension | journal = Kidney International | volume = 91 | issue = 6 | pages = 1324–1335 | date = June 2017 | pmid = 28501304 | doi = 10.1016/j.kint.2017.02.034 | doi-access = free }}</ref> In simple terms, systemic vascular resistance is mainly determined by the caliber of small arteries and arterioles. The resistance attributable to a blood vessel depends on its radius as described by the [[Hagen–Poiseuille equation|Hagen-Poiseuille's equation]] (resistance∝1/radius<sup>4</sup>). Hence, the smaller the radius, the higher the resistance. Other physical factors that affect resistance include: vessel length (the longer the vessel, the higher the resistance), blood viscosity (the higher the viscosity, the higher the resistance)<ref>{{cite journal | vauthors = Lee AJ | title = The role of rheological and haemostatic factors in hypertension | journal = Journal of Human Hypertension | volume = 11 | issue = 12 | pages = 767–776 | date = December 1997 | pmid = 9468002 | doi = 10.1038/sj.jhh.1000556 | doi-access = free }}</ref> and the number of vessels, particularly the smaller numerous, arterioles and capillaries. The presence of a severe arterial [[stenosis]] increases resistance to flow, however this increase in resistance rarely increases systemic blood pressure because its contribution to total systemic resistance is small, although it may profoundly decrease downstream flow.<ref>{{cite journal | vauthors = Coffman JD | title = Pathophysiology of obstructive arterial disease | journal = Herz | volume = 13 | issue = 6 | pages = 343–350 | date = December 1988 | pmid = 3061915 }}</ref> Substances called [[vasoconstrictor]]s reduce the caliber of blood vessels, thereby increasing blood pressure. [[Vasodilator]]s (such as [[nitroglycerin]]) increase the caliber of blood vessels, thereby decreasing arterial pressure. In the longer term a process termed remodeling also contributes to changing the caliber of small blood vessels and influencing resistance and reactivity to vasoactive agents.<ref>{{cite journal | vauthors = Korner PI, Angus JA | title = Structural determinants of vascular resistance properties in hypertension. Haemodynamic and model analysis | journal = Journal of Vascular Research | volume = 29 | issue = 4 | pages = 293–312 | date = 1992 | pmid = 1391553 | doi = 10.1159/000158945 }}</ref><ref>{{cite journal | vauthors = Mulvany MJ | title = Small artery remodelling in hypertension | journal = Basic & Clinical Pharmacology & Toxicology | volume = 110 | issue = 1 | pages = 49–55 | date = January 2012 | pmid = 21733124 | doi = 10.1111/j.1742-7843.2011.00758.x | doi-access = free }}</ref> Reductions in capillary density, termed capillary rarefaction, may also contribute to increased resistance in some circumstances.<ref>{{cite journal | vauthors = de Moraes R, Tibirica E | title = Early Functional and Structural Microvascular Changes in Hypertension Related to Aging | journal = Current Hypertension Reviews | volume = 13 | issue = 1 | pages = 24–32 | date = 2017 | pmid = 28412915 | doi = 10.2174/1573402113666170413095508 }}</ref> In practice, each individual's autonomic nervous system and other systems regulating blood pressure, notably the kidney,<ref>{{cite journal | vauthors = Guyton AC, Coleman TG, Cowley AV, Scheel KW, Manning RD, Norman RA | title = Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension | journal = The American Journal of Medicine | volume = 52 | issue = 5 | pages = 584–594 | date = May 1972 | pmid = 4337474 | doi = 10.1016/0002-9343(72)90050-2 }}</ref> respond to and regulate all these factors so that, although the above issues are important, they rarely act in isolation and the actual arterial pressure response of a given individual can vary widely in the short and long term.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Blood pressure
(section)
Add topic