Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Binary relation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Difunctional === {{anchor|difunctional}} The idea of a difunctional relation is to partition objects by distinguishing attributes, as a generalization of the concept of an [[equivalence relation]]. One way this can be done is with an intervening set <math>Z = \{ x, y, z, \ldots \}</math> of [[Indicator (research)|indicator]]s. The partitioning relation <math>R = F G^\textsf{T}</math> is a [[composition of relations]] using {{em|functional}} relations <math>F \subseteq A \times Z \text{ and } G \subseteq B \times Z.</math> [[Jacques Riguet]] named these relations '''difunctional''' since the composition <math>F G^\mathsf{T}</math> involves functional relations, commonly called ''partial functions''. In 1950 Riguet showed that such relations satisfy the inclusion:<ref>{{cite journal |last1=Riguet |first1=Jacques|author-link=Jacques Riguet|journal=Comptes rendus |date=January 1950 |url=https://gallica.bnf.fr/ark:/12148/bpt6k3182n/f2001.item |language=fr|title=Quelques proprietes des relations difonctionelles|volume=230|pages=1999–2000}}</ref> : <math display=block>R R^\textsf{T} R \subseteq R</math> In [[automata theory]], the term '''rectangular relation''' has also been used to denote a difunctional relation. This terminology recalls the fact that, when represented as a [[logical matrix]], the columns and rows of a difunctional relation can be arranged as a [[block matrix]] with rectangular blocks of ones on the (asymmetric) main diagonal.<ref name="Büchi1989">{{cite book|author=Julius Richard Büchi|title=Finite Automata, Their Algebras and Grammars: Towards a Theory of Formal Expressions|year=1989|publisher=Springer Science & Business Media|isbn=978-1-4613-8853-1|pages=35–37|author-link=Julius Richard Büchi}}</ref> More formally, a relation <math>R</math> on <math>X \times Y</math> is difunctional if and only if it can be written as the union of Cartesian products <math>A_i \times B_i</math>, where the <math>A_i</math> are a partition of a subset of <math>X</math> and the <math>B_i</math> likewise a partition of a subset of <math>Y</math>.<ref>{{cite journal |last1=East |first1=James |last2=Vernitski |first2=Alexei |title=Ranks of ideals in inverse semigroups of difunctional binary relations |journal=Semigroup Forum |date=February 2018 |volume=96 |issue=1 |pages=21–30 |doi=10.1007/s00233-017-9846-9|arxiv=1612.04935|s2cid=54527913 }}</ref> Using the notation <math>\{y \mid xRy\} = xR</math>, a difunctional relation can also be characterized as a relation <math>R</math> such that wherever <math>x_1 R</math> and <math>x_2 R</math> have a non-empty intersection, then these two sets coincide; formally <math>x_1 \cap x_2 \neq \varnothing</math> implies <math>x_1 R = x_2 R.</math><ref name="BrinkKahl1997">{{cite book|author1=Chris Brink|author2=Wolfram Kahl|author3=Gunther Schmidt|title=Relational Methods in Computer Science|year=1997|publisher=Springer Science & Business Media|isbn=978-3-211-82971-4|page=200}}</ref> In 1997 researchers found "utility of binary decomposition based on difunctional dependencies in [[database]] management."<ref>Ali Jaoua, Nadin Belkhiter, Habib Ounalli, and Theodore Moukam (1997) "Databases", pages 197–210 in ''Relational Methods in Computer Science'', edited by Chris Brink, Wolfram Kahl, and [[Gunther Schmidt]], [[Springer Science & Business Media]] {{isbn|978-3-211-82971-4}}</ref> Furthermore, difunctional relations are fundamental in the study of [[bisimulation]]s.<ref>{{Cite book | doi = 10.1007/978-3-662-44124-4_7 | chapter = Coalgebraic Simulations and Congruences| title = Coalgebraic Methods in Computer Science| volume = 8446| pages = 118| series = [[Lecture Notes in Computer Science]]| year = 2014| last1 = Gumm | first1 = H. P. | last2 = Zarrad | first2 = M. | isbn = 978-3-662-44123-7}}</ref> In the context of homogeneous relations, a [[partial equivalence relation]] is difunctional.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Binary relation
(section)
Add topic