Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Arrow's impossibility theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== {{Anchor|Single peak}}Left-right spectrum ==== {{Main|Median voter theorem}} Soon after Arrow published his theorem, [[Duncan Black]] showed his own remarkable result, the [[median voter theorem]]. The theorem proves that if voters and candidates are arranged on a [[Political spectrum|left-right spectrum]], Arrow's conditions are all fully compatible, and all will be met by any rule satisfying [[Condorcet winner criterion|Condorcet's majority-rule principle]].<ref name="Black-1948" /><ref name="Black-1968"/> More formally, Black's theorem assumes preferences are ''single-peaked'': a voter's happiness with a candidate goes up and then down as the candidate moves along some spectrum. For example, in a group of friends choosing a volume setting for music, each friend would likely have their own ideal volume; as the volume gets progressively too loud or too quiet, they would be increasingly dissatisfied. If the domain is restricted to profiles where every individual has a single-peaked preference with respect to the linear ordering, then social preferences are acyclic. In this situation, Condorcet methods satisfy a wide variety of highly-desirable properties, including being fully spoilerproof.<ref name="Black-1948" /><ref name="Black-1968"/><ref name="Campbell2000"/> The rule does not fully generalize from the political spectrum to the political compass, a result related to the [[McKelvey-Schofield chaos theorem]].<ref name="Black-1948" /><ref>{{Cite journal |last1=McKelvey |first1=Richard D. |author-link=Richard McKelvey |year=1976 |title=Intransitivities in multidimensional voting models and some implications for agenda control |journal=Journal of Economic Theory |volume=12 |issue=3 |pages=472β482 |doi=10.1016/0022-0531(76)90040-5}}</ref> However, a well-defined Condorcet winner does exist if the [[Probability distribution|distribution]] of voters is [[Rotational symmetry|rotationally symmetric]] or otherwise has a [[Omnidirectional median|uniquely-defined median]].<ref>{{Cite journal |last1=Davis |first1=Otto A. |last2=DeGroot |first2=Morris H. |last3=Hinich |first3=Melvin J. |date=1972 |title=Social Preference Orderings and Majority Rule |url=http://www.jstor.org/stable/1909727 |journal=Econometrica |volume=40 |issue=1 |pages=147β157 |doi=10.2307/1909727 |jstor=1909727 |issn=0012-9682}}</ref><ref name="dotti2">{{Cite thesis |title=Multidimensional voting models: theory and applications |url=https://discovery.ucl.ac.uk/id/eprint/1516004/ |publisher=UCL (University College London) |date=2016-09-28 |degree=Doctoral |first=V. |last=Dotti}}</ref> In most realistic situations, where voters' opinions follow a roughly-[[normal distribution]] or can be accurately summarized by one or two dimensions, Condorcet cycles are rare (though not unheard of).<ref name="Wolk-2023" /><ref name="Holliday23222"/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Arrow's impossibility theorem
(section)
Add topic