Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Angle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Dot product and generalisations{{anchor|Dot product}}== In the [[Euclidean space]], the angle ''ΞΈ'' between two [[Euclidean vector]]s '''u''' and '''v''' is related to their [[dot product]] and their lengths by the formula <math display="block"> \mathbf{u} \cdot \mathbf{v} = \cos(\theta) \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math> This formula supplies an easy method to find the angle between two planes (or curved surfaces) from their [[normal vector]]s and between [[skew lines]] from their vector equations. ===Inner product=== To define angles in an abstract real [[inner product space]], we replace the Euclidean dot product ( '''Β·''' ) by the inner product <math> \langle \cdot , \cdot \rangle </math>, i.e. <math display="block"> \langle \mathbf{u} , \mathbf{v} \rangle = \cos(\theta)\ \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math> In a complex [[inner product space]], the expression for the cosine above may give non-real values, so it is replaced with <math display="block"> \operatorname{Re} \left( \langle \mathbf{u} , \mathbf{v} \rangle \right) = \cos(\theta) \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math> or, more commonly, using the absolute value, with <math display="block"> \left| \langle \mathbf{u} , \mathbf{v} \rangle \right| = \left| \cos(\theta) \right| \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math> The latter definition ignores the direction of the vectors. It thus describes the angle between one-dimensional subspaces <math>\operatorname{span}(\mathbf{u})</math> and <math>\operatorname{span}(\mathbf{v})</math> spanned by the vectors <math>\mathbf{u}</math> and <math>\mathbf{v}</math> correspondingly. ===Angles between subspaces=== The definition of the angle between one-dimensional subspaces <math>\operatorname{span}(\mathbf{u})</math> and <math>\operatorname{span}(\mathbf{v})</math> given by <math display="block"> \left| \langle \mathbf{u} , \mathbf{v} \rangle \right| = \left| \cos(\theta) \right| \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| </math> in a [[Hilbert space]] can be extended to subspaces of finite dimensions. Given two subspaces <math> \mathcal{U} </math>, <math> \mathcal{W} </math> with <math> \dim ( \mathcal{U}) := k \leq \dim ( \mathcal{W}) := l </math>, this leads to a definition of <math>k</math> angles called canonical or [[principal angles]] between subspaces. ===Angles in Riemannian geometry=== In [[Riemannian geometry]], the [[metric tensor]] is used to define the angle between two [[tangent]]s. Where ''U'' and ''V'' are tangent vectors and ''g''<sub>''ij''</sub> are the components of the metric tensor ''G'', <math display="block"> \cos \theta = \frac{g_{ij} U^i V^j}{\sqrt{ \left| g_{ij} U^i U^j \right| \left| g_{ij} V^i V^j \right|}}. </math> ===Hyperbolic angle=== A [[hyperbolic angle]] is an [[argument of a function|argument]] of a [[hyperbolic function]] just as the ''circular angle'' is the argument of a [[circular function]]. The comparison can be visualized as the size of the openings of a [[hyperbolic sector]] and a [[circular sector]] since the [[area]]s of these sectors correspond to the angle magnitudes in each case.<ref>[[Robert Baldwin Hayward]] (1892) [https://archive.org/details/algebraofcoplana00haywiala/page/n5/mode/2up ''The Algebra of Coplanar Vectors and Trigonometry''], chapter six</ref> Unlike the circular angle, the hyperbolic angle is unbounded. When the circular and hyperbolic functions are viewed as [[infinite series]] in their angle argument, the circular ones are just [[alternating series]] forms of the hyperbolic functions. This comparison of the two series corresponding to functions of angles was described by [[Leonhard Euler]] in ''[[Introduction to the Analysis of the Infinite]]'' (1748).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Angle
(section)
Add topic