Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Allan variance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Overlapped variable ''Ο'' estimators=== A technique presented by J. J. Snyder<ref name=Snyder1981>Snyder, J. J.: ''An ultra-high resolution frequency meter'', pages 464β469, Frequency Control Symposium #35, 1981.</ref> provided an improved tool, as measurements were overlapped in ''n'' overlapped series out of the original series. The overlapping Allan variance estimator was introduced by Howe, Allan and Barnes.<ref name=Howe1981/> This can be shown to be equivalent to averaging the time or normalized frequency samples in blocks of ''n'' samples prior to processing. The resulting predictor becomes :<math> \begin{align} \sigma_y^2(n\tau_0, M) & = \operatorname{AVAR}(n\tau_0, M) = \frac{1}{2n^2(M - 2n + 1)} \sum_{j=0}^{M-2n} \left( \sum_{i=j}^{j+n-1} y_{i+n} - y_i \right)^2 \\[5pt] & = \frac{1}{2(M - 2n + 1)} \sum_{j=0}^{M-2n} \left(\bar{y}_{j+n} - \bar{y}_j \right)^2, \end{align} </math> or for the time series: :<math>\sigma_y^2(n\tau_0, N) = \operatorname{AVAR}(n\tau_0, N) = \frac{1}{2n^2\tau_0^2(N - 2n)} \sum_{i=0}^{N-2n-1} (x_{i+2n} - 2x_{i+n} + x_i)^2.</math> The overlapping estimators have far superior performance over the non-overlapping estimators, as ''n'' rises and the time-series is of moderate length. The overlapped estimators have been accepted as the preferred Allan variance estimators in IEEE,<ref name=IEEE1139/> ITU-T<ref name=itutg810>ITU-T Rec. G.810: [http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.810-199608-I!!PDF-E&type=items ''Definitions and terminology for synchronization and networks''], ITU-T Rec. G.810 (08/96).</ref> and ETSI<ref name=ETSIEN3004610101>ETSI EN 300 462-1-1: [http://www.etsi.org/deliver/etsi_en/300400_300499/3004620701/01.01.01_20/en_3004620701v010101c.pdf ''Definitions and terminology for synchronisation networks''], ETSI EN 300 462-1-1 V1.1.1 (1998β05).</ref> standards for comparable measurements such as needed for telecommunication qualification.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Allan variance
(section)
Add topic