Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Uncertainty principle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===The Maccone–Pati uncertainty relations=== The Robertson–Schrödinger uncertainty relation can be trivial if the state of the system is chosen to be eigenstate of one of the observable. The stronger uncertainty relations proved by Lorenzo Maccone and [[Arun K. Pati]] give non-trivial bounds on the sum of the variances for two incompatible observables.<ref>{{cite journal|last1=Maccone|first1=Lorenzo|last2=Pati|first2=Arun K.|title=Stronger Uncertainty Relations for All Incompatible Observables|journal=Physical Review Letters|date=31 December 2014|volume=113| issue=26|page=260401|doi=10.1103/PhysRevLett.113.260401|pmid=25615288|arxiv=1407.0338|bibcode=2014PhRvL.113z0401M|s2cid=21334130 }}</ref> (Earlier works on uncertainty relations formulated as the sum of variances include, e.g., Ref.<ref>{{cite journal |last1=Huang |first1=Yichen |title=Variance-based uncertainty relations |journal=Physical Review A |date=10 August 2012 |volume=86 |issue=2 |page=024101 |doi=10.1103/PhysRevA.86.024101|arxiv=1012.3105 |bibcode=2012PhRvA..86b4101H |s2cid=118507388 }}</ref> due to Yichen Huang.) For two non-commuting observables <math>A</math> and <math>B</math> the first stronger uncertainty relation is given by <math display="block"> \sigma_{A}^2 + \sigma_{ B}^2 \ge \pm i \langle \Psi\mid [A, B]|\Psi \rangle + \mid \langle \Psi\mid(A \pm i B)\mid{\bar \Psi} \rangle|^2, </math> where <math> \sigma_{A}^2 = \langle \Psi |A^2 |\Psi \rangle - \langle \Psi \mid A \mid \Psi \rangle^2 </math>, <math> \sigma_{B}^2 = \langle \Psi |B^2 |\Psi \rangle - \langle \Psi \mid B \mid\Psi \rangle^2 </math>, <math>|{\bar \Psi} \rangle </math> is a normalized vector that is orthogonal to the state of the system <math>|\Psi \rangle </math> and one should choose the sign of <math>\pm i \langle \Psi\mid[A, B]\mid\Psi \rangle </math> to make this real quantity a positive number. The second stronger uncertainty relation is given by <math display="block"> \sigma_A^2 + \sigma_B^2 \ge \frac{1}{2}| \langle {\bar \Psi}_{A+B} \mid(A + B)\mid \Psi \rangle|^2 </math> where <math>| {\bar \Psi}_{A+B} \rangle </math> is a state orthogonal to <math> |\Psi \rangle </math>. The form of <math>| {\bar \Psi}_{A+B} \rangle </math> implies that the right-hand side of the new uncertainty relation is nonzero unless <math>| \Psi\rangle </math> is an eigenstate of <math>(A + B)</math>. One may note that <math>|\Psi \rangle </math> can be an eigenstate of <math>( A+ B)</math> without being an eigenstate of either <math> A</math> or <math> B </math>. However, when <math> |\Psi \rangle </math> is an eigenstate of one of the two observables the Heisenberg–Schrödinger uncertainty relation becomes trivial. But the lower bound in the new relation is nonzero unless <math> |\Psi \rangle </math> is an eigenstate of both.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Uncertainty principle
(section)
Add topic