Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quantum electrodynamics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Nonperturbative phenomena=== The predictive success of quantum electrodynamics largely rests on the use of perturbation theory, expressed in Feynman diagrams. However, quantum electrodynamics also leads to predictions beyond perturbation theory. In the presence of very strong electric fields, it predicts that electrons and positrons will be spontaneously produced, so causing the decay of the field. This process, called the [[Schwinger effect]],<ref name="Schwinger">{{cite journal | last=Schwinger | first=Julian | title=On Gauge Invariance and Vacuum Polarization | journal=Physical Review | publisher=American Physical Society (APS) | volume=82 | issue=5 | date=1951-06-01 | issn=0031-899X | doi=10.1103/physrev.82.664 | pages=664β679| bibcode=1951PhRv...82..664S }}</ref> cannot be understood in terms of any finite number of Feynman diagrams and hence is described as [[Non-perturbative|nonperturbative]]. Mathematically, it can be derived by a semiclassical approximation to the [[Path integral formulation|path integral]] of quantum electrodynamics.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quantum electrodynamics
(section)
Add topic