Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Photon
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== In matter == {{See also|Refractive index|Group velocity|Photochemistry}} Light that travels through transparent matter does so at a lower speed than ''c'', the speed of light in vacuum. The factor by which the speed is decreased is called the [[refractive index]] of the material. In a classical wave picture, the slowing can be explained by the light inducing [[electric polarization]] in the matter, the polarized matter radiating new light, and that new light interfering with the original light wave to form a delayed wave. In a particle picture, the slowing can instead be described as a blending of the photon with quantum excitations of the matter to produce [[quasi-particle]]s known as [[polariton|polaritons]]. Polaritons have a nonzero [[effective mass (solid-state physics)|effective mass]], which means that they cannot travel at ''c''. Light of different frequencies may travel through matter at [[variable speed of light|different speeds]]; this is called [[dispersion (optics)|dispersion]] (not to be confused with scattering). In some cases, it can result in [[slow light|extremely slow speeds of light]] in matter. The effects of photon interactions with other quasi-particles may be observed directly in [[Raman scattering]] and [[Brillouin scattering]].<ref>Polaritons section 10.10.1, Raman and Brillouin scattering section 10.11.3 in {{Cite book |last1=Patterson |first1=J. D. |title=Solid-State Physics: Introduction to the Theory |last2=Bailey |first2=B. C. |publisher=[[Springer Science+Business Media|Springer]] |year=2007 |isbn=978-3-540-24115-7 |language=en}}</ref> Photons can be scattered by matter. For example, photons scatter so many times in the solar [[radiative zone]] after leaving the [[Solar core|core of the Sun]] that [[radiant energy]] takes about a million years to reach the [[convection zone]].<ref>{{Cite web |title=The Solar Interior |url=https://solarscience.msfc.nasa.gov/interior.shtml |work=Marshall Space Flight Center: Solar Physics |publisher=National Aeronautics and Space Commission |access-date=4 December 2024}}</ref> However, photons emitted from the sun's [[photosphere]] take only 8.3 minutes to reach Earth.<ref>{{Cite book |last1 = Koupelis |first1 = Theo |last2 = Kuhn |first2 = Karl F. |year = 2007 |url = https://books.google.com/books?id=6rTttN4ZdyoC&pg=PA102 |title = In Quest of the Universe |page = 102 |publisher = Jones and Bartlett Canada |isbn = 9780763743871 |access-date = 2020-11-29 |archive-date = 2024-05-12 |archive-url = https://web.archive.org/web/20240512231402/https://books.google.com/books?id=6rTttN4ZdyoC&pg=PA102#v=onepage&q&f=false |url-status = live }}</ref> Photons can also be [[absorption (electromagnetic radiation)|absorbed]] by nuclei, atoms or molecules, provoking transitions between their [[energy level]]s. A classic example is the molecular transition of [[retinal]] (C<sub>20</sub>H<sub>28</sub>O), which is responsible for [[Visual perception|vision]], as discovered in 1958 by Nobel laureate [[biochemist]] [[George Wald]] and co-workers. The absorption provokes a [[cis–trans]] [[isomerization]] that, in combination with other such transitions, is transduced into nerve impulses. The absorption of photons can even break chemical bonds, as in the [[photodissociation]] of [[chlorine]]; this is the subject of [[photochemistry]].<ref>E.g. section 11-5 C in {{Cite book |last1=Pine |first1=S. H. |title=Organic Chemistry |last2=Hendrickson |first2=J. B. |last3=Cram |first3=D. J. |last4=Hammond |first4=G. S. |publisher=McGraw-Hill |year=1980 |isbn=978-0-07-050115-7 |edition=4th |language=en}}</ref><ref>Nobel lecture given by G. Wald on December 12, 1967, online at nobelprize.org: [http://nobelprize.org/nobel_prizes/medicine/laureates/1967/wald-lecture.html The Molecular Basis of Visual Excitation] {{Webarchive|url=https://web.archive.org/web/20160423182216/http://www.nobelprize.org/nobel_prizes/medicine/laureates/1967/wald-lecture.html |date=2016-04-23 }}.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Photon
(section)
Add topic