Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Noether's theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Generalization of the proof === This applies to ''any'' local symmetry derivation ''Q'' satisfying ''QS'' ≈ 0, and also to more general local functional differentiable actions, including ones where the Lagrangian depends on higher derivatives of the fields. Let ''ε'' be any arbitrary smooth function of the spacetime (or time) manifold such that the closure of its support is disjoint from the boundary. ''ε'' is a [[test function]]. Then, because of the variational principle (which does ''not'' apply to the boundary, by the way), the derivation distribution q generated by ''q''[''ε''][Φ(''x'')] = ''ε''(''x'')''Q''[Φ(''x'')] satisfies ''q''[''ε''][''S''] ≈ 0 for every ''ε'', or more compactly, ''q''(''x'')[''S''] ≈ 0 for all ''x'' not on the boundary (but remember that ''q''(''x'') is a shorthand for a derivation ''distribution'', not a derivation parametrized by ''x'' in general). This is the generalization of Noether's theorem. To see how the generalization is related to the version given above, assume that the action is the spacetime integral of a Lagrangian that only depends on <math>\varphi</math> and its first derivatives. Also, assume :<math>Q[\mathcal{L}]\approx\partial_\mu f^\mu</math> Then, :<math> \begin{align} q[\varepsilon][\mathcal{S}] & = \int q[\varepsilon][\mathcal{L}] d^{n} x \\[6pt] & = \int \left\{ \left(\frac{\partial}{\partial \varphi}\mathcal{L}\right) \varepsilon Q[\varphi]+ \left[\frac{\partial}{\partial (\partial_\mu \varphi)}\mathcal{L}\right]\partial_\mu(\varepsilon Q[\varphi]) \right\} d^{n} x \\[6pt] & = \int \left\{ \varepsilon Q[\mathcal{L}] + \partial_{\mu}\varepsilon \left[\frac{\partial}{\partial \left( \partial_\mu \varphi\right)} \mathcal{L} \right] Q[\varphi] \right\} \, d^{n} x \\[6pt] & \approx \int \varepsilon \partial_\mu \left\{f^\mu-\left[\frac{\partial}{\partial (\partial_\mu\varphi)}\mathcal{L}\right]Q[\varphi]\right\} \, d^{n} x \end{align} </math> for all <math>\varepsilon</math>. More generally, if the Lagrangian depends on higher derivatives, then :<math> \partial_\mu\left[ f^\mu - \left[\frac{\partial}{\partial (\partial_\mu \varphi)} \mathcal{L} \right] Q[\varphi] - 2\left[\frac{\partial}{\partial (\partial_\mu \partial_\nu \varphi)} \mathcal{L}\right]\partial_\nu Q[\varphi] + \partial_\nu\left[\left[\frac{\partial}{\partial (\partial_\mu \partial_\nu \varphi)}\mathcal{L}\right] Q[\varphi]\right] - \,\dotsm \right] \approx 0. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Noether's theorem
(section)
Add topic