Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Natural transformation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Horizontal composition === If <math>\eta: F \Rightarrow G</math> is a natural transformation between functors <math>F, G: C \to D</math> and <math>\epsilon: J \Rightarrow K</math> is a natural transformation between functors <math>J, K: D \to E</math>, then the composition of functors allows a composition of natural transformations <math>\epsilon * \eta: J \circ F \Rightarrow K \circ G</math> with components :<math>(\epsilon * \eta)_X = \epsilon_{G(X)} \circ J(\eta_X) = K(\eta_X) \circ \epsilon_{F(X)}</math>. By using whiskering (see below), we can write :<math>(\epsilon * \eta)_X = (\epsilon G)_X \circ (J \eta)_X = (K \eta)_X \circ (\epsilon F)_X</math>, hence :<math>\epsilon * \eta = \epsilon G \circ J \eta = K \eta \circ \epsilon F</math>. [[Image:Horizontal composition of natural transformations.svg|center|400px|alt=This is a commutative diagram generated using LaTeX. The left hand square shows the result of applying J to the commutative diagram for eta:F to G on f:X to Y. The right had side shows the commutative diagram for epsilon:J to K applied to G(f):G(X) to G(Y).]] This horizontal composition of natural transformations is also associative with identity. This identity is the identity natural transformation on the [[identity functor]], i.e., the natural transformation that associate to each object its [[identity morphism]]: for object <math>X</math> in category <math>C</math>, <math>(\mathrm{id}_{\mathrm{id}_C})_X = \mathrm{id}_{\mathrm{id}_C(X)} = \mathrm{id}_X</math>. :For <math>\eta: F \Rightarrow G</math> with <math>F, G: C \to D</math>, <math>\mathrm{id}_{\mathrm{id}_D} * \eta = \eta = \eta * \mathrm{id}_{\mathrm{id}_C}</math>. As identity functors <math>\mathrm{id}_C</math> and <math>\mathrm{id}_D</math> are functors, the identity for horizontal composition is also the identity for vertical composition, but not vice versa.<ref>{{cite web | url=https://bartoszmilewski.com/2015/04/07/natural-transformations/ | title=Natural Transformations | date=7 April 2015 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Natural transformation
(section)
Add topic