Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Multiplication
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Computer algorithms=== {{Main|Multiplication algorithm#Fast multiplication algorithms for large inputs}} The classical method of multiplying two {{math|''n''}}-digit numbers requires {{math|''n''<sup>2</sup>}} digit multiplications. [[Multiplication algorithm]]s have been designed that reduce the computation time considerably when multiplying large numbers. Methods based on the [[Discrete Fourier transform#Multiplication of large integers|discrete Fourier transform]] reduce the [[computational complexity]] to {{math|''O''(''n'' log ''n'' log log ''n'')}}. In 2016, the factor {{math|log log ''n''}} was replaced by a function that increases much slower, though still not constant.<ref>{{Cite journal|last1=Harvey|first1=David|last2=van der Hoeven|first2=Joris|last3=Lecerf|first3=Grégoire|title=Even faster integer multiplication|date=2016|journal=Journal of Complexity|volume=36|pages=1–30|doi=10.1016/j.jco.2016.03.001|issn=0885-064X|arxiv=1407.3360|s2cid=205861906}}</ref> In March 2019, David Harvey and Joris van der Hoeven submitted a paper presenting an integer multiplication algorithm with a complexity of <math>O(n\log n).</math><ref>David Harvey, Joris Van Der Hoeven (2019). [https://hal.archives-ouvertes.fr/hal-02070778 Integer multiplication in time O(n log n)] {{Webarchive|url=https://web.archive.org/web/20190408180939/https://hal.archives-ouvertes.fr/hal-02070778 |date=2019-04-08 }}</ref> The algorithm, also based on the fast Fourier transform, is conjectured to be asymptotically optimal.<ref>{{Cite web|url=https://www.quantamagazine.org/mathematicians-discover-the-perfect-way-to-multiply-20190411/|title=Mathematicians Discover the Perfect Way to Multiply|last=Hartnett|first=Kevin|website=Quanta Magazine|date=11 April 2019|language=en|access-date=2020-01-25}}</ref> The algorithm is not practically useful, as it only becomes faster for multiplying extremely large numbers (having more than {{math|2<sup>1729<sup>12</sup></sup>}} bits).<ref>{{Cite web|url=https://cacm.acm.org/magazines/2020/1/241707-multiplication-hits-the-speed-limit/fulltext|title=Multiplication Hits the Speed Limit|last=Klarreich|first=Erica|website=cacm.acm.org|date=January 2020 |language=en|access-date=2020-01-25|archive-url=https://archive.today/20201031123457/https://cacm.acm.org/magazines/2020/1/241707-multiplication-hits-the-speed-limit/fulltext|archive-date=2020-10-31|url-status=live}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Multiplication
(section)
Add topic