Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lorentz force
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Covariant form of the Lorentz force === ==== Field tensor ==== {{main|Covariant formulation of classical electromagnetism|Mathematical descriptions of the electromagnetic field}} Using the [[metric signature]] {{math|(1, −1, −1, −1)}}, the Lorentz force for a charge {{mvar|q}} can be written in [[Lorentz covariance|covariant form]]:{{sfn|Jackson|1998|loc=chpt. 11}} {{Equation box 1 |indent =: |equation = <math> \frac{\mathrm{d} p^\alpha}{\mathrm{d} \tau} = q F^{\alpha \beta} U_\beta </math> |cellpadding |border |border colour = #50C878 |background colour = #ECFCF4}} where {{mvar|p<sup>α</sup>}} is the [[four-momentum]], defined as <math display="block">p^\alpha = \left(p_0, p_1, p_2, p_3 \right) = \left(\gamma m c, p_x, p_y, p_z \right) ,</math> {{mvar|τ}} the [[proper time]] of the particle, {{mvar|F<sup>αβ</sup>}} the contravariant [[electromagnetic tensor]] <math display="block">F^{\alpha \beta} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix} </math> and {{mvar|U}} is the covariant [[four-velocity|4-velocity]] of the particle, defined as: <math display="block">U_\beta = \left(U_0, U_1, U_2, U_3 \right) = \gamma \left(c, -v_x, -v_y, -v_z \right) ,</math> in which <math display="block">\gamma(v)=\frac{1}{\sqrt{1- \frac{v^2}{c^2} } }=\frac{1}{\sqrt{1- \frac{v_x^2 + v_y^2+ v_z^2}{c^2} } }</math> is the [[Lorentz factor]]. The fields are transformed to a frame moving with constant relative velocity by: <math display="block"> F'^{\mu \nu} = {\Lambda^{\mu} }_{\alpha} {\Lambda^{\nu} }_{\beta} F^{\alpha \beta} \, ,</math> where {{math|Λ<sup>''μ''</sup><sub>''α''</sub>}} is the [[Lorentz transformation]] tensor. ==== Translation to vector notation ==== The {{math|1=''α'' = 1}} component ({{mvar|x}}-component) of the force is <math display="block"> \frac{\mathrm{d} p^1}{\mathrm{d} \tau} = q U_\beta F^{1 \beta} = q\left(U_0 F^{10} + U_1 F^{11} + U_2 F^{12} + U_3 F^{13} \right) .</math> Substituting the components of the covariant electromagnetic tensor ''F'' yields <math display="block"> \frac{\mathrm{d} p^1}{\mathrm{d} \tau} = q \left[U_0 \left(\frac{E_x}{c} \right) + U_2 (-B_z) + U_3 (B_y) \right] .</math> Using the components of covariant [[four-velocity]] yields <math display="block"> \frac{\mathrm{d} p^1}{\mathrm{d} \tau} = q \gamma \left[c \left(\frac{E_x}{c} \right) + (-v_y) (-B_z) + (-v_z) (B_y) \right] = q \gamma \left(E_x + v_y B_z - v_z B_y \right) = q \gamma \left[ E_x + \left( \mathbf{v} \times \mathbf{B} \right)_x \right] \, . </math> The calculation for {{math|1=''α'' = 2, 3}} (force components in the {{mvar|y}} and {{mvar|z}} directions) yields similar results, so collecting the three equations into one: <math display="block"> \frac{\mathrm{d} \mathbf{p} }{\mathrm{d} \tau} = q \gamma\left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) , </math> and since differentials in coordinate time {{mvar|dt}} and proper time {{mvar|dτ}} are related by the Lorentz factor, <math display="block">dt=\gamma(v) \, d\tau,</math> so we arrive at <math display="block"> \frac{\mathrm{d} \mathbf{p} }{\mathrm{d} t} = q \left( \mathbf{E} + \mathbf{v} \times \mathbf{B} \right) .</math> This is precisely the Lorentz force law, however, it is important to note that {{math|'''p'''}} is the relativistic expression, <math display="block">\mathbf{p} = \gamma(v) m_0 \mathbf{v} \,.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lorentz force
(section)
Add topic