Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lidar
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Geology and soil science=== High-resolution [[digital elevation map]]s generated by airborne and stationary lidar have led to significant advances in [[geomorphology]] (the branch of geoscience concerned with the origin and evolution of the Earth surface topography). The lidar abilities to detect subtle topographic features such as river terraces and river channel banks,<ref>{{Cite journal |last1=Conesa-García |first1=Carmelo |last2=Puig-Mengual |first2=Carlos |last3=Riquelme |first3=Adrián |last4=Tomás |first4=Roberto |last5=Martínez-Capel |first5=Francisco |last6=García-Lorenzo |first6=Rafael |last7=Pastor |first7=José L. |last8=Pérez-Cutillas |first8=Pedro |last9=Martínez-Salvador |first9=Alberto |last10=Cano-Gonzalez |first10=Miguel |date=February 2022 |title=Changes in stream power and morphological adjustments at the event-scale and high spatial resolution along an ephemeral gravel-bed channel |url=https://doi.org/10.1016/j.geomorph.2021.108053 |journal=Geomorphology |volume=398 |pages=108053 |doi=10.1016/j.geomorph.2021.108053 |bibcode=2022Geomo.39808053C |issn=0169-555X|hdl=10251/190056 |hdl-access=free }}</ref> glacial landforms,<ref>{{cite journal |last1=Janowski |first1=Lukasz |last2=Tylmann |first2=Karol |last3=Trzcinska |first3=Karolina |last4=Rudowski |first4=Stanislaw |last5=Tegowski |first5=Jaroslaw |title=Exploration of Glacial Landforms by Object-Based Image Analysis and Spectral Parameters of Digital Elevation Model |journal=IEEE Transactions on Geoscience and Remote Sensing |date=2021 |volume=60 |pages=1–17 |doi=10.1109/TGRS.2021.3091771|doi-access=free }}</ref> to measure the land-surface elevation beneath the vegetation canopy, to better resolve spatial derivatives of elevation, to rockfall detection,<ref>{{Cite journal |last1=Tomás |first1=R. |last2=Abellán |first2=A. |last3=Cano |first3=M. |last4=Riquelme |first4=A. |last5=Tenza-Abril |first5=A. J. |last6=Baeza-Brotons |first6=F. |last7=Saval |first7=J. M. |last8=Jaboyedoff |first8=M. |date=2018-02-01 |title=A multidisciplinary approach for the investigation of a rock spreading on an urban slope |journal=Landslides |volume=15 |issue=2 |pages=199–217 |doi=10.1007/s10346-017-0865-0 |issn=1612-5118|doi-access=free |bibcode=2018Lands..15..199T |hdl=10045/73318 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Tonini |first1=Marj |last2=Abellan |first2=Antonio |date=2014-06-30 |title=Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R |url=https://josis.org/index.php/josis/article/view/50 |journal=Journal of Spatial Information Science |issue=8 |pages=95–110 |doi=10.5311/josis.2014.8.123 |issn=1948-660X}}</ref> to detect elevation changes between repeat surveys<ref>{{Cite journal |last1=Hu |first1=Liuru |last2=Navarro-Hernández |first2=María I. |last3=Liu |first3=Xiaojie |last4=Tomás |first4=Roberto |last5=Tang |first5=Xinming |last6=Bru |first6=Guadalupe |last7=Ezquerro |first7=Pablo |last8=Zhang |first8=Qingtao |date=October 2022 |title=Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin (Spain) using open-access aerial LiDAR datasets |url=https://doi.org/10.1016/j.rse.2022.113218 |journal=Remote Sensing of Environment |volume=280 |pages=113218 |doi=10.1016/j.rse.2022.113218 |bibcode=2022RSEnv.28013218H |issn=0034-4257|hdl=10045/126163 |hdl-access=free }}</ref> have enabled many novel studies of the physical and chemical processes that shape landscapes.<ref>{{cite journal|author1=Hughes, M. W.|author2=Quigley, M. C|author3=van Ballegooy, S.|author4=Deam, B. L.|author5=Bradley, B. A.|author6=Hart, D. E.|date=2015|title=The sinking city: Earthquakes increase flood hazard in Christchurch, New Zealand|journal=GSA Today|volume=25 | issue = 3 |pages=4–10|url=https://www.geosociety.org/gsatoday/archive/25/3/article/i1052-5173-25-3-4.htm?rss=1|access-date=2016-02-22|doi=10.1130/Geology}}</ref> In 2005 the [[Tour Ronde]] in the [[Mont Blanc massif]] became the first high [[Alps|alpine mountain]] on which lidar was employed to monitor the increasing occurrence of severe rock-fall over large rock faces allegedly caused by [[climate change]] and degradation of permafrost at high altitude.<ref>{{cite journal|last1=Rabatel|first1=Antoine|last2=Deline|first2=Philip|last3=Jaillet|first3=Ste'phane|last4=Ravanel|first4=Ludovic|title=Rock falls in high-alpine rock walls quantified by terrestrial lidar measurements: A case study in the Mont Blanc area|journal=Geophysical Research Letters|date=28 May 2008|volume=35|issue=10|pages=L10502|doi=10.1029/2008GL033424|bibcode = 2008GeoRL..3510502R |s2cid=52085197 |doi-access=}}</ref> Lidar is also used in [[structural geology]] and geophysics as a combination between airborne lidar and [[GNSS]] for the detection and study of [[Fault (geology)|fault]]s, for measuring [[Tectonic uplift|uplift]].<ref>{{Cite journal|last1=Cunningham|first1=Dickson|last2=Grebby|first2=Stephen|last3=Tansey|first3=Kevin|last4=Gosar|first4=Andrej|last5=Kastelic|first5=Vanja|date=2006|title=Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia|journal=Geophysical Research Letters|volume=33|issue=20|pages=L20308|doi=10.1029/2006GL027014|issn=1944-8007|bibcode=2006GeoRL..3320308C|url=http://eprints.nottingham.ac.uk/33910/1/Cunningham_et_al_2006.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://eprints.nottingham.ac.uk/33910/1/Cunningham_et_al_2006.pdf |archive-date=2022-10-09 |url-status=live|doi-access=free}}</ref> The output of the two technologies can produce extremely accurate elevation models for terrain – models that can even measure ground elevation through trees. This combination was used most famously to find the location of the [[Seattle Fault]] in [[Washington (state)|Washington]], United States.<ref>{{cite web|url=http://www.seattlepi.com/local/19144_quake18.shtml |title=LIDAR shows where earthquake risks are highest |website=Seattlepi.com |date=2001-04-17 |access-date=2016-02-22}}</ref> This combination also measures uplift at [[Mount St. Helens]] by using data from before and after the 2004 uplift.<ref>[http://wagda.lib.washington.edu/data/type/elevation/lidar/st_helens/ 'Mount Saint Helens LIDAR Data', ''Washington State Geospatial Data Archive'' (September 13, 2006)]. Retrieved 8 August 2007.</ref> Airborne lidar systems monitor [[glacier]]s and have the ability to detect subtle amounts of growth or decline. A satellite-based system, the [[NASA]] [[ICESat]], includes a lidar sub-system for this purpose. The NASA Airborne Topographic Mapper<ref>[http://atm.wff.nasa.gov/ 'Airborne Topographic Mapper', ''NASA.gov'']. Retrieved 8 August 2007.</ref> is also used extensively to monitor [[glacier]]s and perform coastal change analysis. The combination is also used by soil scientists while creating a [[soil survey]]. The detailed terrain modeling allows soil scientists to see slope changes and landform breaks which indicate patterns in soil spatial relationships.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lidar
(section)
Add topic