Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Interval (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Convex sets and convex components in order theory ==== {{main article|convex set (order theory)}} A subset <math>A\subseteq X</math> of the [[preordered set]] <math>(X,\lesssim)</math> is '''(order-)convex''' if for every <math>x,y\in A</math> and every <math>x\lesssim z\lesssim y</math> we have <math>z\in A.</math> Unlike in the case of the real line, a convex set of a preordered set need not be an interval. For example, in the [[totally ordered set]] <math>(\mathbb Q,\le)</math> of [[rational number]]s, the set :<math>\mathbb Q=\{x\in\mathbb Q \mid x^2<2\}</math> is convex, but not an interval of <math>\mathbb Q,</math> since there is no square root of two in <math>\mathbb Q.</math> Let <math>(X,\lesssim)</math> be a [[preordered set]] and let <math>Y\subseteq X.</math> The convex sets of <math>X</math> contained in <math>Y</math> form a [[poset]] under inclusion. A [[maximal element]] of this poset is called a '''convex component''' of <math>Y.</math><ref name="Heath">{{cite journal |last1=Heath |first1=R. W. |last2=Lutzer |first2=David J. |last3=Zenor |first3=P. L. |title=Monotonically normal spaces |language=en |journal=Transactions of the American Mathematical Society |volume=178 |pages=481β493 |date=1973 |issn=0002-9947 |doi=10.2307/1996713 |jstor=1996713 |mr=0372826 |zbl=0269.54009 |doi-access=free }}</ref>{{rp|Definition 5.1}}<ref name="Steen">{{cite journal |last=Steen |first=Lynn A. |title=A direct proof that a linearly ordered space is hereditarily collection-wise normal |language=en |journal=Proceedings of the American Mathematical Society |volume=24 |pages=727β728 |date=1970 |issue=4 |issn=0002-9939 |doi=10.2307/2037311 |jstor=2037311 |mr=0257985 |zbl=0189.53103 |doi-access=free }}</ref>{{rp|727}} By the [[Zorn lemma]], any convex set of <math>X</math> contained in <math>Y</math> is contained in some convex component of <math>Y,</math> but such components need not be unique. In a [[totally ordered set]], such a component is always unique. That is, the convex components of a subset of a totally ordered set form a [[partition of a set|partition]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Interval (mathematics)
(section)
Add topic