Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Golden ratio
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Golden triangle and golden gnomon===== {{main|Golden triangle (mathematics)}} [[File:Golden triangle (math).svg|235px|right|thumb|A [[Golden triangle (mathematics)|golden triangle]] {{mvar|ABC}} can be subdivided by an angle bisector into a smaller golden triangle {{mvar|CXB}} and a golden gnomon {{mvar|XAC}}.]] The triangle formed by two diagonals and a side of a regular pentagon is called a ''golden triangle'' or ''sublime triangle''. It is an acute [[isosceles triangle]] with apex angle {{tmath|36^\circ}} and base angles {{tmath|72^\circ\!}}.<ref name=fletcher /> Its two equal sides are in the golden ratio to its base.<ref name=loeb /> The triangle formed by two sides and a diagonal of a regular pentagon is called a ''golden gnomon''. It is an obtuse isosceles triangle with apex angle {{tmath|108^\circ}} and base angle {{tmath|36^\circ\!}}. Its base is in the golden ratio to its two equal sides.<ref name=loeb /> The pentagon can thus be subdivided into two golden gnomons and a central golden triangle. The five points of a [[Pentagram|regular pentagram]] are golden triangles,<ref name=loeb /> as are the ten triangles formed by connecting the vertices of a [[regular decagon]] to its center point.<ref name=miller /> Bisecting one of the base angles of the golden triangle subdivides it into a smaller golden triangle and a golden gnomon. Analogously, any acute isosceles triangle can be subdivided into a similar triangle and an obtuse isosceles triangle, but the golden triangle is the only one for which this subdivision is made by the angle bisector, because it is the only isosceles triangle whose base angle is twice its apex angle. The angle bisector of the golden triangle subdivides the side that it meets in the golden ratio, and the areas of the two subdivided pieces are also in the golden ratio.<ref name=loeb /> If the apex angle of the golden gnomon is [[Angle trisection|trisected]], the trisector again subdivides it into a smaller golden gnomon and a golden triangle. The trisector subdivides the base in the golden ratio, and the two pieces have areas in the golden ratio. Analogously, any obtuse triangle can be subdivided into a similar triangle and an acute isosceles triangle, but the golden gnomon is the only one for which this subdivision is made by the angle trisector, because it is the only isosceles triangle whose apex angle is three times its base angle.<ref name=loeb />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Golden ratio
(section)
Add topic