Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fokker–Planck equation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==The path integral formulation== Every Fokker–Planck equation is equivalent to a [[Path integral formulation|path integral]]. The path integral formulation is an excellent starting point for the application of field theory methods.<ref>{{Cite book|author=Zinn-Justin, Jean |title=Quantum field theory and critical phenomena |publisher=Clarendon Press |location=Oxford |year=1996 |isbn=978-0-19-851882-2 }}</ref> This is used, for instance, in [[Critical phenomena#Critical dynamics|critical dynamics]]. The derivation of the path integral is similar to that used in quantum mechanics. A derivation for the Fokker–Planck equation with one variable <math>x</math> follows. Inserting a [[delta function]] and integrating by parts gives: <math display="block">\begin{align} \frac{\partial }{\partial t} p{\left( x', t\right)} & = - \frac{\partial }{\partial x'} \left[ D_1(x',t) p(x',t) \right] + \frac{\partial^2 }{\partial {x'}^2} \left[ D_2(x',t) p(x',t) \right] \\[1ex] & = \int_{-\infty}^{\infty} dx\left[ \left( D_{1}{\left( x,t\right)} \frac{\partial }{\partial x} + D_2{ \left( x,t\right)} \frac{\partial^2}{\partial x^2}\right) \delta{\left( x' -x\right)} \right] p(x,t). \end{align}</math> The <math>x</math>-derivatives act only on the <math>\delta</math>-function, not on <math>p(x,t)</math>. Performing an integral over a time interval <math>\varepsilon</math> gives <math display="block">p(x', t + \varepsilon) =\int_{-\infty}^\infty \, \mathrm{d}x\left(\left( 1+\varepsilon \left[ D_1(x,t) \frac \partial {\partial x} + D_2(x,t) \frac{\partial^2}{\partial x^2}\right]\right) \delta(x' - x) \right) p(x,t)+O(\varepsilon^2).</math> The Dirac <math>\delta</math>-function can be represented by the [[Fourier integral]] as <math display="block">\delta{\left( x' - x\right)} = \int_{-\infty}^{\infty} \frac{\mathrm{d} k}{2\pi} e^{-ik {\left( x - x'\right)}}</math> which yields <math display="block">\begin{align} p(x', t+\varepsilon) & = \int_{-\infty}^\infty \mathrm{d}x \int_{-\infty}^{\infty} \frac{\mathrm{d}k}{2\pi} \left(1-\varepsilon \left[ ik D_1(x,t) +k^2 D_2(x,t) \right] \right) e^{-ik (x - x')}p(x,t) +O(\varepsilon^2) \\[5pt] & =\int_{-\infty}^\infty \mathrm{d}x \int_{-\infty}^{\infty} \frac{\mathrm{d}k}{2\pi}\exp \left( -\varepsilon \left[ ik\frac{(x'- x)}{\varepsilon} +ik D_1(x,t) +k^2 D_2(x,t) \right] \right) p(x,t) +O(\varepsilon^2). \end{align}</math> This equation expresses <math>p(x', t+\varepsilon)</math> as functional of <math>p(x,t)</math>. Iterating <math>(t'-t)/\varepsilon</math> times and performing the limit <math>\varepsilon \rightarrow 0</math> gives a path integral with [[Action (physics)|action]] <math display="block">S=-\int \mathrm{d}t\left[ ik D_1 (x,t) + k^2 D_2 (x,t) +ik\frac{\partial x}{\partial t} \right].</math> The variable <math>k</math> conjugate to <math>x</math> is called the "response variable".<ref name="Janssen">{{Cite journal | last=Janssen |first=H. K. |title=On a Lagrangean for Classical Field Dynamics and Renormalization Group Calculation of Dynamical Critical Properties |journal=Z. Phys. |volume=B23 |issue= 4|pages=377–380 |year=1976 |doi=10.1007/BF01316547 |bibcode = 1976ZPhyB..23..377J |s2cid=121216943 }}</ref> Although formally equivalent, different problems may be solved more easily in the Fokker–Planck equation or the path integral formulation. The equilibrium distribution for instance may be obtained more directly from the Fokker–Planck equation.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fokker–Planck equation
(section)
Add topic