Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Exponential distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related distributions== * If ''X'' ~ [[Laplace distribution|Laplace(μ, β<sup>−1</sup>)]], then |''X'' − μ| ~ Exp(β).<ref name="Leemis" /> * If ''X'' ~ [[Uniform distribution (continuous)|''U''(0, 1)]] then −log(''X'') ~ Exp(1). * If ''X'' ~ [[Pareto distribution|Pareto(1, λ)]], then log(''X'') ~ Exp(λ).<ref name="Leemis">{{cite journal|title=Univariate Distribution Relationships|first1=Lawrence M.|last1=Leemis|first2=Jacquelyn T.|last2=McQuestion|journal=The American Statistician|date=February 2008|volume=62|number=1|page=45-53|doi=10.1198/000313008X270448 |url=https://www.math.wm.edu/~leemis/2008amstat.pdf}}</ref> * If ''X'' ~ [[Skew-logistic distribution|SkewLogistic(θ)]], then <math>\log\left(1 + e^{-X}\right) \sim \operatorname{Exp}(\theta)</math>. * If ''X<sub>i</sub>'' ~ [[Uniform distribution (continuous)|''U''(0, 1)]] then <math display="block">\lim_{n \to \infty}n \min \left(X_1, \ldots, X_n\right) \sim \operatorname{Exp}(1)</math> * The exponential distribution is a limit of a scaled [[beta distribution]]: <math display="block">\lim_{n \to \infty} n \operatorname{Beta}(1, n) = \operatorname{Exp}(1).</math> * The exponential distribution is a special case of type 3 [[Pearson distribution]]. * The exponential distribution is the special case of a [[Gamma distribution]] with shape parameter 1.<ref name="Leemis" /> * If ''X'' ~ Exp(λ) and ''X''{{sub|''i''}} ~ Exp(λ{{sub|''i''}}) then: ** <math>kX \sim \operatorname{Exp}\left(\frac{\lambda}{k}\right)</math>, closure under scaling by a positive factor. ** 1 + ''X'' ~ [[Benktander Weibull distribution|BenktanderWeibull]](λ, 1), which reduces to a truncated exponential distribution. ** ''ke<sup>X</sup>'' ~ [[Pareto distribution|Pareto]](''k'', λ).<ref name="Leemis" /> ** ''e<sup>−λX</sup>'' ~ [[Uniform distribution (continuous)|''U''(0, 1)]]. ** ''e<sup>−X</sup>'' ~ [[Beta distribution|Beta]](λ, 1).<ref name="Leemis" /> ** {{sfrac|1|k}}''e''{{sup|''X''}} ~ [[power law|PowerLaw]](''k'', λ) ** <math>\sqrt{X} \sim \operatorname{Rayleigh} \left(\frac{1}{\sqrt{2\lambda}}\right)</math>, the [[Rayleigh distribution]]<ref name="Leemis" /> ** <math>X \sim \operatorname{Weibull}\left(\frac{1}{\lambda}, 1\right)</math>, the [[Weibull distribution]]<ref name="Leemis" /> ** <math>X^2 \sim \operatorname{Weibull}\left(\frac{1}{\lambda^2}, \frac{1}{2}\right)</math><ref name="Leemis" /> ** {{nowrap|μ − β log(λ''X'') ∼ [[Gumbel distribution|Gumbel]](μ, β)}}. ** <math>\lfloor X\rfloor \sim \operatorname{Geometric}\left(1-e^{-\lambda}\right)</math>, a [[geometric distribution]] on 0,1,2,3,... ** <math>\lceil X\rceil \sim \operatorname{Geometric}\left(1-e^{-\lambda}\right)</math>, a [[geometric distribution]] on 1,2,3,4,... ** If also ''Y'' ~ Erlang(''n'', λ) or<math>Y \sim \Gamma\left(n, \frac{1}{\lambda}\right)</math> then <math>\frac{X}{Y} + 1 \sim \operatorname{Pareto}(1, n)</math> ** If also λ ~ [[gamma distribution|Gamma]](''k'', θ) (shape, scale parametrisation) then the marginal distribution of ''X'' is [[Lomax distribution|Lomax]](''k'', 1/θ), the gamma [[compound distribution|mixture]] ** λ{{sub|1}}''X''{{sub|1}} − λ{{sub|2}}''Y''{{sub|2}} ~ [[Laplace distribution|Laplace(0, 1)]]. ** min{''X''<sub>1</sub>, ..., ''X<sub>n</sub>''} ~ Exp(λ<sub>1</sub> + ... + λ<sub>''n''</sub>). ** If also λ{{sub|''i''}} = λ then: *** <math>X_1 + \cdots + X_k = \sum_i X_i \sim</math> [[Erlang distribution|Erlang]](''k'', λ) = [[gamma distribution|Gamma]](''k'', λ) with integer shape parameter ''k'' and rate parameter λ.<ref>{{cite book| title=Fundamentals of Applied Probability and Random Processes|first=Oliver C.|last=Ibe| page=128| url=https://books.google.com/books?id=K10XAwAAQBAJ| edition=2nd|year=2014| publisher=Academic Press| isbn=9780128010358}}</ref> *** If <math>T = (X_1 + \cdots + X_n ) = \sum_{i=1}^n X_i</math>, then <math>2 \lambda T \sim \chi^2_{2n}</math>. *** ''X''{{sub|''i''}} − ''X''{{sub|''j''}} ~ Laplace(0, λ<sup>−1</sup>). ** If also ''X''{{sub|''i''}} are independent, then: *** <math>\frac{X_i}{X_i + X_j}</math> ~ [[uniform distribution (continuous)|U]](0, 1) *** <math>Z = \frac{\lambda_i X_i}{\lambda_j X_j}</math> has probability density function <math>f_Z(z) = \frac{1}{(z + 1)^2}</math>. This can be used to obtain a [[confidence interval]] for <math>\frac{\lambda_i}{\lambda_j}</math>. ** If also λ = 1: *** <math>\mu - \beta\log\left(\frac{e^{-X}}{1 - e^{-X}}\right) \sim \operatorname{Logistic}(\mu, \beta)</math>, the [[logistic distribution]] *** <math>\mu - \beta\log\left(\frac{X_i}{X_j}\right) \sim \operatorname{Logistic}(\mu, \beta)</math> *** ''μ'' − σ log(''X'') ~ [[generalized extreme value distribution|GEV(μ, σ, 0)]]. *** Further if <math>Y \sim \Gamma\left(\alpha, \frac{\beta}{\alpha}\right)</math> then <math>\sqrt{XY} \sim \operatorname{K}(\alpha, \beta)</math> ([[K-distribution]]) ** If also λ = 1/2 then {{nowrap|''X'' ∼ χ{{su|b=2|p=2}}}}; i.e., ''X'' has a [[chi-squared distribution]] with 2 [[degrees of freedom (statistics)|degrees of freedom]]. Hence: <math display="block">\operatorname{Exp}(\lambda) = \frac{1}{2\lambda} \operatorname{Exp}\left(\frac{1}{2} \right) \sim \frac{1}{2\lambda} \chi_2^2\Rightarrow \sum_{i=1}^n \operatorname{Exp}(\lambda) \sim \frac{1}{2\lambda }\chi_{2n}^2</math> * If <math>X \sim \operatorname{Exp}\left(\frac{1}{\lambda}\right)</math> and <math>Y \mid X</math> ~ [[Poisson distribution|Poisson(''X'')]] then <math>Y \sim \operatorname{Geometric}\left(\frac{1}{1 + \lambda}\right)</math> ([[geometric distribution]]) * The [[Hoyt distribution]] can be obtained from exponential distribution and [[arcsine distribution]] * The exponential distribution is a limit of the [[Kaniadakis Exponential distribution|''κ''-exponential distribution]] in the <math>\kappa = 0</math> case. * Exponential distribution is a limit of the [[κ-Generalized Gamma distribution]] in the <math>\alpha = 1</math> and <math>\nu = 1</math> cases: *: <math>\lim_{(\alpha,\nu)\to(0,1)} p_\kappa(x) = (1+\kappa\nu)(2\kappa)^\nu \frac{\Gamma\Big(\frac{1}{2\kappa}+\frac{\nu}{2}\Big)}{\Gamma\Big(\frac{1}{2\kappa}-\frac{\nu}{2}\Big)} \frac{\alpha \lambda^\nu}{\Gamma(\nu)} x^{\alpha\nu-1}\exp_\kappa(-\lambda x^\alpha) = \lambda e^{ - \lambda x} </math> Other related distributions: * [[Hyper-exponential distribution]] – the distribution whose density is a weighted sum of exponential densities. * [[Hypoexponential distribution]] – the distribution of a general sum of exponential random variables.<ref name="Leemis" /> * [[exGaussian distribution]] – the sum of an exponential distribution and a [[normal distribution]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Exponential distribution
(section)
Add topic