Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Exponential === The constant {{math|{{var|e}}{{i sup|1px|{{var|Ξ³}}}}}} is important in number theory. Its numerical value is:{{r|OEIS_A073004}} {{block indent|{{gaps|1.78107|24179|90197|98523|65041|03107|17954|91696|45214|30343|...}}.}} {{math|{{var|e}}{{i sup|1px|{{var|Ξ³}}}}}} equals the following [[limit of a sequence|limit]], where {{math|{{var|p}}{{sub|{{var|n}}}}}} is the {{mvar|n}}th [[prime number]]: <math display="block">e^\gamma = \lim_{n\to\infty}\frac1{\log p_n} \prod_{i=1}^n \frac{p_i}{p_i-1}.</math> This restates the third of [[Mertens' theorems]].{{r|excursions}} We further have the following product involving the three constants {{math|{{var|e}}}}, {{math|{{var|Ο}}}} and {{math|{{var|Ξ³}}}}:<ref name=":9">{{Cite web |last=Weisstein |first=Eric W. |title=Mertens Theorem |url=https://mathworld.wolfram.com/MertensTheorem.html |access-date=2024-10-08 |website=mathworld.wolfram.com |language=en}}</ref> <math display="block">\frac{\pi^2}{6e^\gamma}=\lim_{n\to\infty}\frac1{\log p_n} \prod_{i=1}^n \frac{p_i}{p_i+1}.</math> Other [[infinite product]]s relating to {{math|{{var|e}}{{i sup|1px|{{var|Ξ³}}}}}} include: <math display="block">\begin{align} \frac{e^{1+\frac{\gamma}{2}}}{\sqrt{2\pi}} &= \prod_{n=1}^\infty e^{-1+\frac1{2n}}\left(1+\frac1{n}\right)^n \\ \frac{e^{3+2\gamma}}{2\pi} &= \prod_{n=1}^\infty e^{-2+\frac2{n}}\left(1+\frac2{n}\right)^n. \end{align}</math> These products result from the [[Barnes G-function|Barnes {{mvar|G}}-function]]. In addition, <math display="block">e^{\gamma} = \sqrt{\frac2{1}} \cdot \sqrt[3]{\frac{2^2}{1\cdot 3}} \cdot \sqrt[4]{\frac{2^3\cdot 4}{1\cdot 3^3}} \cdot \sqrt[5]{\frac{2^4\cdot 4^4}{1\cdot 3^6\cdot 5}} \cdots</math> where the {{mvar|n}}th factor is the {{math|({{var|n}} + 1)}}th root of <math display="block">\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}.</math> This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow using [[hypergeometric function]]s.{{r|Sondow2003}} It also holds that{{r|ChoiSrivastava2010}} <math display="block">\frac{e^\frac{\pi}{2}+e^{-\frac{\pi}{2}}}{\pi e^\gamma}=\prod_{n=1}^\infty\left(e^{-\frac{1}{n}}\left(1+\frac{1}{n}+\frac{1}{2n^2}\right)\right).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's constant
(section)
Add topic