Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipsoid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== In higher dimensions and general position {{anchor|In higher dimensions|Ellipsoids in higher dimensions and general position}} == A '''hyperellipsoid''', or ellipsoid of dimension <math>n - 1</math> in a [[Euclidean space]] of dimension <math>n</math>, is a [[quadric hypersurface]] defined by a polynomial of degree two that has a [[homogeneous polynomial|homogeneous part]] of degree two which is a [[positive definite quadratic form]]. One can also define a hyperellipsoid as the image of a sphere under an invertible [[affine transformation]]. The spectral theorem can again be used to obtain a standard equation of the form :<math>\frac{x_1^2}{a_1^2}+\frac{x_2^2}{a_2^2}+\cdots + \frac{x_n^2}{a_n^2}=1.</math> The volume of an {{mvar|n}}-dimensional ''hyperellipsoid'' can be obtained by replacing {{mvar|R<sup>n</sup>}} by the product of the semi-axes {{math|''a''<sub>1</sub>''a''<sub>2</sub>...''a<sub>n</sub>''}} in the formula for the [[Volume of an n-ball#The volume|volume of a hypersphere]]: :<math>V = \frac{\pi^\frac{n}{2}}{\Gamma{\left(\frac{n}{2} + 1\right)}} a_1a_2\cdots a_n \approx \frac{1}{\sqrt{\pi n}} \cdot \left(\frac{2 e \pi}{n}\right)^{n/2} a_1a_2\cdots a_n </math> (where {{math|Γ}} is the [[gamma function]]). === As a quadric === If {{mvar|'''A'''}} is a real, symmetric, {{mvar|n}}-by-{{mvar|n}} [[positive-definite matrix]], and {{mvar|'''v'''}} is a vector in <math>\R^n,</math> then the set of points {{math|'''x'''}} that satisfy the equation :<math>(\mathbf{x}-\mathbf{v})^\mathsf{T}\! \boldsymbol{A}\, (\mathbf{x}-\mathbf{v}) = 1</math> is an ''n''-dimensional ellipsoid centered at {{mvar|'''v'''}}. The expression <math>(\mathbf{x}-\mathbf{v})^\mathsf{T}\! \boldsymbol{A}\, (\mathbf{x}-\mathbf{v}) </math> is also called the '''ellipsoidal norm''' of {{math|'''x''' − '''v'''}}. For every ellipsoid, there are unique {{mvar|'''A'''}} and {{math|'''v'''}} that satisfy the above equation.<ref name=":0" />{{Rp|page=67|location=}} The [[eigenvector]]s of {{mvar|'''A'''}} are the principal axes of the ellipsoid, and the [[eigenvalue]]s of {{mvar|'''A'''}} are the reciprocals of the squares of the semi-axes (in three dimensions these are {{math|''a''<sup>−2</sup>}}, {{math|''b''<sup>−2</sup>}} and {{math|''c''<sup>−2</sup>}}).<ref>{{cite web |url=http://see.stanford.edu/materials/lsoeldsee263/15-symm.pdf |title=Lecture 15 – Symmetric matrices, quadratic forms, matrix norm, and SVD |access-date=2013-10-12 |url-status=live |archive-url=https://web.archive.org/web/20130626233838/http://see.stanford.edu/materials/lsoeldsee263/15-symm.pdf |archive-date=2013-06-26}} pp. 17–18.</ref> In particular: * The [[diameter]] of the ellipsoid is twice the longest semi-axis, which is twice the square-root of the reciprocal of the largest eigenvalue of {{mvar|'''A'''}}. * The [[width]] of the ellipsoid is twice the shortest semi-axis, which is twice the square-root of the reciprocal of the smallest eigenvalue of {{mvar|'''A'''}}. An invertible [[linear transformation]] applied to a sphere produces an ellipsoid, which can be brought into the above standard form by a suitable [[rotation]], a consequence of the [[polar decomposition]] (also, see [[spectral theorem]]). If the linear transformation is represented by a [[symmetric matrix|symmetric 3 × 3 matrix]], then the eigenvectors of the matrix are orthogonal (due to the [[spectral theorem]]) and represent the directions of the axes of the ellipsoid; the lengths of the semi-axes are computed from the eigenvalues. The [[singular value decomposition]] and [[polar decomposition]] are matrix decompositions closely related to these geometric observations. For every positive definite matrix <math>\boldsymbol{A}</math>, there exists a unique positive definite matrix denoted {{math|'''''A'''''<sup>1/2</sup>}}, such that <math>\boldsymbol{A} = \boldsymbol{A}^{1/ 2}\boldsymbol{A}^{1/ 2}; </math> this notation is motivated by the fact that this matrix can be seen as the "positive square root" of <math>\boldsymbol{A}.</math> The ellipsoid defined by <math>(\mathbf{x}-\mathbf{v})^\mathsf{T}\! \boldsymbol{A}\, (\mathbf{x}-\mathbf{v}) = 1</math> can also be presented as<ref name=":0">{{Cite Geometric Algorithms and Combinatorial Optimization}}</ref>{{Rp|page=67|location=}}<blockquote><math>A^{-1/2}\cdot S(\mathbf{0},1) + \mathbf{v}</math></blockquote>where S('''0''',1) is the [[unit sphere]] around the origin. === Parametric representation === [[File:Ellipsoid-affin.svg|300px|thumb|ellipsoid as an affine image of the unit sphere]] The key to a parametric representation of an ellipsoid in general position is the alternative definition: : ''An ellipsoid is an affine image of the unit sphere.'' An [[affine transformation]] can be represented by a translation with a vector {{math|'''f'''<sub>0</sub>}} and a regular 3 × 3 matrix {{math|'''''A'''''}}: : <math>\mathbf x \mapsto \mathbf f_0 + \boldsymbol A \mathbf x = \mathbf f_0 + x\mathbf f_1 + y\mathbf f_2 + z\mathbf f_3</math> where {{math|'''f'''<sub>1</sub>, '''f'''<sub>2</sub>, '''f'''<sub>3</sub>}} are the column vectors of matrix {{math|'''''A'''''}}. A parametric representation of an ellipsoid in general position can be obtained by the parametric representation of a unit sphere (see above) and an affine transformation: : <math>\mathbf x(\theta, \varphi) = \mathbf f_0 + \mathbf f_1 \cos\theta \cos\varphi + \mathbf f_2 \cos\theta \sin\varphi + \mathbf f_3 \sin\theta, \qquad -\tfrac{\pi}{2} < \theta < \tfrac{\pi}{2},\quad 0 \le \varphi < 2\pi</math>. If the vectors {{math|'''f'''<sub>1</sub>, '''f'''<sub>2</sub>, '''f'''<sub>3</sub>}} form an orthogonal system, the six points with vectors {{math|'''f'''<sub>0</sub> ± '''f'''<sub>1,2,3</sub>}} are the vertices of the ellipsoid and {{math|{{abs|'''f'''<sub>1</sub>}}, {{abs|'''f'''<sub>2</sub>}}, {{abs|'''f'''<sub>3</sub>}}}} are the semi-principal axes. A surface normal vector at point {{math|'''x'''(''θ'', ''φ'')}} is : <math>\mathbf n(\theta, \varphi) = \mathbf f_2 \times \mathbf f_3\cos\theta\cos\varphi + \mathbf f_3 \times \mathbf f_1\cos\theta\sin\varphi + \mathbf f_1 \times \mathbf f_2\sin\theta.</math> For any ellipsoid there exists an [[Implicit surface|implicit representation]] {{math|''F''(''x'', ''y'', ''z'') {{=}} 0}}. If for simplicity the center of the ellipsoid is the origin, {{math|'''f'''<sub>0</sub> {{=}} '''0'''}}, the following equation describes the ellipsoid above:<ref>[http://www.mathematik.tu-darmstadt.de/~ehartmann/cdg-skript-1998.pdf ''Computerunterstützte Darstellende und Konstruktive Geometrie.''] {{webarchive |url=https://web.archive.org/web/20131110190049/http://www.mathematik.tu-darmstadt.de/~ehartmann/cdg-skript-1998.pdf |date=2013-11-10}} Uni Darmstadt (PDF; 3,4 MB), S. 88.</ref> : <math>F(x, y, z) = \operatorname{det}\left(\mathbf x, \mathbf f_2, \mathbf f_3\right)^2 + \operatorname{det}\left(\mathbf f_1,\mathbf x, \mathbf f_3\right)^2 + \operatorname{det}\left(\mathbf f_1, \mathbf f_2, \mathbf x\right)^2 - \operatorname{det}\left(\mathbf f_1, \mathbf f_2, \mathbf f_3\right)^2 = 0</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipsoid
(section)
Add topic