Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Determinant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Block matrices === The formula for the determinant of a <math>2 \times 2</math> matrix above continues to hold, under appropriate further assumptions, for a [[block matrix]], i.e., a matrix composed of four submatrices <math>A, B, C, D</math> of dimension <math>m \times m</math>, <math>m \times n</math>, <math>n \times m</math> and <math>n \times n</math>, respectively. The easiest such formula, which can be proven using either the Leibniz formula or a factorization involving the [[Schur complement]], is :<math>\det\begin{pmatrix}A& 0\\ C& D\end{pmatrix} = \det(A) \det(D) = \det\begin{pmatrix}A& B\\ 0& D\end{pmatrix}.</math> If <math>A</math> is [[Invertible matrix|invertible]], then it follows with results from the section on multiplicativity that :<math>\begin{align} \det\begin{pmatrix}A& B\\ C& D\end{pmatrix} & = \det(A)\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} \underbrace{\det\begin{pmatrix}A^{-1}& -A^{-1} B\\ 0& I_n\end{pmatrix}}_{=\,\det(A^{-1})\,=\,(\det A)^{-1}}\\ & = \det(A) \det\begin{pmatrix}I_m& 0\\ C A^{-1}& D-C A^{-1} B\end{pmatrix}\\ & = \det(A) \det(D - C A^{-1} B), \end{align}</math> which simplifies to <math>\det (A) (D - C A^{-1} B)</math> when <math>D</math> is a <math>1 \times 1</math> matrix. A similar result holds when <math>D</math> is invertible, namely :<math>\begin{align} \det\begin{pmatrix}A& B\\ C& D\end{pmatrix} & = \det(D)\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} \underbrace{\det\begin{pmatrix}I_m& 0\\ -D^{-1} C& D^{-1}\end{pmatrix}}_{=\,\det(D^{-1})\,=\,(\det D)^{-1}}\\ & = \det(D) \det\begin{pmatrix}A - B D^{-1} C& B D^{-1}\\ 0& I_n\end{pmatrix}\\ & = \det(D) \det(A - B D^{-1} C). \end{align}</math> Both results can be combined to derive [[Sylvester's determinant theorem]], which is also stated below. If the blocks are square matrices of the ''same'' size further formulas hold. For example, if <math>C</math> and <math>D</math> [[commutativity|commute]] (i.e., <math>CD=DC</math>), then<ref>{{Cite journal|first=J. R.|last= Silvester|title= Determinants of Block Matrices|journal= Math. Gaz.|volume=84 |issue= 501|year=2000 | pages= 460β467| jstor=3620776|url= https://hal.archives-ouvertes.fr/hal-01509379/document|doi= 10.2307/3620776|s2cid= 41879675}}</ref> :<math>\det\begin{pmatrix}A& B\\ C& D\end{pmatrix} = \det(AD - BC).</math> This formula has been generalized to matrices composed of more than <math>2 \times 2</math> blocks, again under appropriate commutativity conditions among the individual blocks.<ref>{{cite journal|last1=Sothanaphan|first1=Nat|title=Determinants of block matrices with noncommuting blocks|journal=Linear Algebra and Its Applications|date=January 2017|volume=512| pages=202β218| doi=10.1016/j.laa.2016.10.004|arxiv=1805.06027|s2cid=119272194}}</ref> For <math>A = D</math> and <math>B = C</math>, the following formula holds (even if <math>A</math> and <math>B</math> do not commute). :<math>\det\begin{pmatrix}A & B\\ B & A\end{pmatrix} = \det\begin{pmatrix}A+B & B\\ B+A & A\end{pmatrix} = \det\begin{pmatrix}A+B & B\\ 0 & A-B\end{pmatrix} = \det(A+B) \det(A-B).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Determinant
(section)
Add topic