Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Carbon dioxide
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Regulation of respiration === Carbon dioxide is one of the mediators of local [[autoregulation]] of blood supply. If its concentration is high, the [[capillaries]] expand to allow a greater blood flow to that tissue.<ref>{{cite journal |last1=Battisti-Charbonney |first1=A. |last2=Fisher |first2=J. |last3=Duffin |first3=J. |date=15 Jun 2011 |title=The cerebrovascular response to carbon dioxide in humans |journal=J. Physiol. |volume=589 |issue=12 |pages=3039β3048 |doi=10.1113/jphysiol.2011.206052 |pmc=3139085 |pmid=21521758}}</ref> Bicarbonate ions are crucial for regulating blood pH. A person's breathing rate influences the level of {{CO2}} in their blood. Breathing that is too slow or shallow causes [[respiratory acidosis]], while breathing that is too rapid leads to [[hyperventilation]], which can cause [[alkalosis|respiratory alkalosis]].<ref>{{cite journal |last1=Patel |first1=S. |last2=Miao |first2=J.H. |last3=Yetiskul |first3=E. |last4=Anokhin |first4=A. |last5=Majmunder |first5=S.H. |year=2022 |title=Physiology, Carbon Dioxide Retention |url=https://www.ncbi.nlm.nih.gov/books/NBK482456/ |publisher=National Center for Biotechnology Information, NIH |pmid=29494063 |access-date=20 August 2022 |website=National Library of Medicine}}</ref> Although the body requires oxygen for metabolism, low oxygen levels normally do not stimulate breathing. Rather, breathing is stimulated by higher carbon dioxide levels. As a result, breathing low-pressure air or a gas mixture with no oxygen at all (such as pure nitrogen) can lead to loss of consciousness without ever experiencing [[air hunger]]. This is especially perilous for high-altitude fighter pilots. It is also why flight attendants instruct passengers, in case of loss of cabin pressure, to apply the [[oxygen mask]] to themselves first before helping others; otherwise, one risks losing consciousness.<ref name="solarnav" /> The respiratory centers try to maintain an arterial {{CO2}} pressure of 40 [[mmHg]]. With intentional hyperventilation, the {{CO2}} content of arterial blood may be lowered to 10β20 mmHg (the oxygen content of the blood is little affected), and the respiratory drive is diminished. This is why one can hold one's breath longer after hyperventilating than without hyperventilating. This carries the risk that unconsciousness may result before the need to breathe becomes overwhelming, which is why hyperventilation is particularly dangerous before free diving.<ref>{{cite journal |last1=Wilmshurst |first1=Peter |date=1998 |title=ABC of oxygen |journal=BMJ |volume=317 |issue=7164 |pages=996β999 |doi=10.1136/bmj.317.7164.996 |pmc=1114047 |pmid=9765173}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Carbon dioxide
(section)
Add topic