Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Calculus
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Leibniz notation === {{Main|Leibniz's notation}} A common notation, introduced by Leibniz, for the derivative in the example above is :<math> \begin{align} y&=x^2 \\ \frac{dy}{dx}&=2x. \end{align} </math> In an approach based on limits, the symbol {{math|{{sfrac|''dy''|'' dx''}}}} is to be interpreted not as the quotient of two numbers but as a shorthand for the limit computed above.<ref name=":4" />{{Rp|page=74}} Leibniz, however, did intend it to represent the quotient of two infinitesimally small numbers, {{math|''dy''}} being the infinitesimally small change in {{math|''y''}} caused by an infinitesimally small change {{math|'' dx''}} applied to {{math|''x''}}. We can also think of {{math|{{sfrac|''d''|'' dx''}}}} as a differentiation operator, which takes a function as an input and gives another function, the derivative, as the output. For example: :<math> \frac{d}{dx}(x^2)=2x. </math> In this usage, the {{math|''dx''}} in the denominator is read as "with respect to {{math|''x''}}".<ref name=":4" />{{Rp|page=79}} Another example of correct notation could be: :<math>\begin{align} g(t) &= t^2 + 2t + 4 \\ {d \over dt}g(t) &= 2t + 2 \end{align} </math> Even when calculus is developed using limits rather than infinitesimals, it is common to manipulate symbols like {{math|'' dx''}} and {{math|''dy''}} as if they were real numbers; although it is possible to avoid such manipulations, they are sometimes notationally convenient in expressing operations such as the [[total derivative]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Calculus
(section)
Add topic