Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
CMOS
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Temperature range == Conventional CMOS devices work over a range of β55 Β°C to +125 Β°C. There were theoretical indications as early as August 2008 that silicon CMOS will work down to β233 Β°C (40 [[kelvin|K]]).<ref>Edwards C., "Temperature control", ''[[Engineering & Technology]]'' 26 July{{snd}} 8 August 2008, [[Institution of Engineering and Technology|IET]].</ref> Functioning temperatures near 40 K have since been achieved using overclocked AMD [[Phenom II]] processors with a combination of [[liquid nitrogen]] and [[liquid helium]] cooling.<ref>{{cite web |url=http://blogs.amd.com/home/2009/01/15/breaking-records-with-dragons-and-helium-in-the-las-vegas-desert/ |title=Breaking Records with Dragons and Helium in the Las Vegas Desert |first=Patrick |last=Moorhead |publisher=blogs.amd.com/patmoorhead |date=January 15, 2009 |access-date=2009-09-18 |url-status=dead |archive-url=https://web.archive.org/web/20100915140806/http://blogs.amd.com/home/2009/01/15/breaking-records-with-dragons-and-helium-in-the-las-vegas-desert/ |archive-date=September 15, 2010 }}</ref> [[Silicon carbide]] CMOS devices have been tested for a year at 500 Β°C.<ref>{{cite journal |last1=Clark |first1=D.T. |last2=Ramsay |first2=E.P. |last3=Murphy |first3=A.E. |last4=Smith |first4=D.A. |last5=Thompson |first5=Robin.F. |last6=Young |first6=R.A.R. |last7=Cormack |first7=J.D. |last8=Zhu |first8=C. |last9=Finney |first9=S. |last10=Fletcher |first10=J. |title=High Temperature Silicon Carbide CMOS Integrated Circuits |journal=Materials Science Forum |volume=679β680 |pages=726β729 |year=2011 |doi=10.4028/www.scientific.net/msf.679-680.726 |s2cid=110071501 }}</ref><ref>{{cite web |first1=Alan |last1=Mantooth |first2=Carl-Mikael |last2=Zetterling |first3=Ana |last3=Rusu |title=The Radio We Could Send to Hell: Silicon carbide radio circuits can take the volcanic heat of Venus |date=28 April 2021 |work=IEEE Spectrum |publisher= |url=https://spectrum.ieee.org/the-radio-we-could-send-to-hell}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
CMOS
(section)
Add topic