Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Z-transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== {| class="wikitable" |+ '''Properties of the z-transform''' ! Property ! Time domain ! Z-domain ! Proof ! ROC |- !Definition of Z-transform |<math>x[n]</math> |<math>X(z)</math> |<math>X(z)=\mathcal{Z}\{x[n]\}</math> (definition of the z-transform) <math>x[n]=\mathcal{Z}^{-1}\{X(z)\}</math> (definition of the inverse z-transform) |<math>r_2<|z|<r_1</math> |- ! [[Linearity]] | <math>a_1 x_1[n] + a_2 x_2[n]</math> | <math>a_1 X_1(z) + a_2 X_2(z)</math> | <math>\begin{align}X(z) &= \sum_{n=-\infty}^{\infty} (a_1x_1[n]+a_2x_2[n])z^{-n} \\ &= a_1\sum_{n=-\infty}^{\infty} x_1[n] \, z^{-n} + a_2\sum_{n=-\infty}^{\infty}x_2[n] \, z^{-n} \\ &= a_1X_1(z) + a_2X_2(z) \end{align} </math> | Contains ROC<sub>1</sub> β© ROC<sub>2</sub> |- ! [[Upsampling|Time expansion]] | <math>x_K[n] = \begin{cases} x[r], & n = Kr \\ 0, & n \notin K\mathbb{Z} \end{cases}</math> with <math>K\mathbb{Z} := \{Kr: r \in \mathbb{Z}\}</math> | <math>X(z^K)</math> | <math>\begin{align} X_K(z) &=\sum_{n=-\infty}^{\infty} x_K[n]z^{-n} \\ &= \sum_{r=-\infty}^{\infty}x[r]z^{-rK}\\ &= \sum_{r=-\infty}^{\infty}x[r](z^{K})^{-r}\\ &= X(z^{K}) \end{align}</math> | <math>R^{\frac{1}{K}}</math> |- ! [[Downsampling|Decimation]] | <math>x[Kn]</math> | <math>\frac{1}{K} \sum_{p=0}^{K-1} X\left(z^{\tfrac{1}{K}} \cdot e^{-i \tfrac{2\pi}{K} p}\right)</math> | [http://www2.ece.ohio-state.edu/~schniter/ee700/handouts/multirate.pdf ohio-state.edu] or [http://www.ee.ic.ac.uk/hp/staff/dmb/courses/DSPDF/01100_Multirate.pdf ee.ic.ac.uk] | |- ! Time delay | <math>x[n-k]</math> with <math>k>0</math> and <math>x : x[n]=0\ \forall \, n<0</math> | <math>z^{-k}X(z)</math> | <math>\begin{align} \mathcal{Z}\{x[n-k]\} &= \sum_{n=0}^{\infty} x[n-k]z^{-n}\\ &= \sum_{j=-k}^{\infty} x[j]z^{-(j+k)}&& j = n-k \\ &= \sum_{j=-k}^{\infty} x[j]z^{-j}z^{-k} \\ &= z^{-k}\sum_{j=-k}^{\infty}x[j]z^{-j}\\ &= z^{-k}\sum_{j=0}^{\infty}x[j]z^{-j} && x[\beta] = 0, \beta < 0\\ &= z^{-k}X(z)\end{align} </math> | ROC, except <math>z{=}0</math> if <math>k > 0</math> and <math>z {=} \infty</math> if <math>k < 0</math> |- ! Time advance | <math>x[n+k]</math> with <math>k>0</math> | Bilateral Z-transform: <math display="block">z^kX(z)</math> Unilateral Z-transform:<ref>{{cite book |last1=Bolzern |first1=Paolo |last2=Scattolini |first2=Riccardo |last3=Schiavoni |first3=Nicola |title=Fondamenti di Controlli Automatici |language=it |publisher=MC Graw Hill Education |isbn=978-88-386-6882-1|year=2015 }}</ref> <math display="block">z^k \, X(z)-z^k\sum^{k-1}_{n=0}x[n] \, z^{-n}</math> | | |- ! First difference backward | <math>x[n] - x[n-1]</math> with <math>x[n]{=}0 </math> for <math>n < 0 </math> | <math> (1-z^{-1}) \, X(z)</math> | | Contains the intersection of ROC of <math>X_1(z)</math> and <math>z \neq 0</math> |- ! First difference forward | <math>x[n+1] - x[n]</math> | <math> (z-1) \, X(z)-z \, x[0]</math> | | |- ! Time reversal | <math>x[-n]</math> | <math>X(z^{-1})</math> | <math>\begin{align} \mathcal{Z}\{x(-n)\} &= \sum_{n=-\infty}^{\infty} x[-n]z^{-n} \\ &= \sum_{m=-\infty}^{\infty} x[m]z^{m}\\ &= \sum_{m=-\infty}^{\infty} x[m]{(z^{-1})}^{-m}\\ &= X(z^{-1}) \\ \end{align} </math> | <math>\tfrac{1}{r_1}<|z|<\tfrac{1}{r_2}</math> |- ! Scaling in the z-domain | <math>a^n x[n]</math> | <math>X(a^{-1}z)</math> | <math>\begin{align}\mathcal{Z} \left \{a^n x[n] \right \} &= \sum_{n=-\infty}^{\infty} a^{n}x[n]z^{-n} \\ &= \sum_{n=-\infty}^{\infty} x[n](a^{-1}z)^{-n} \\ &= X(a^{-1}z) \end{align} </math> | <math>|a|r_2 < |z|< |a|r_1</math> |- ! [[Complex conjugation]] | <math>x^*[n]</math> | <math>X^*(z^*)</math> | <math>\begin{align} \mathcal{Z} \{x^*(n)\} &= \sum_{n=-\infty}^{\infty} x^*[n]z^{-n}\\ &= \sum_{n=-\infty}^{\infty} \left [x[n](z^*)^{-n} \right ]^*\\ &= \left [ \sum_{n=-\infty}^{\infty} x[n](z^*)^{-n}\right ]^*\\ &= X^*(z^*) \end{align} </math> | |- ! [[Real part]] | <math>\operatorname{Re}\{x[n]\}</math> | <math>\tfrac{1}{2}\left[X(z)+X^*(z^*) \right]</math> | | |- ! [[Imaginary part]] | <math>\operatorname{Im}\{x[n]\}</math> | <math>\tfrac{1}{2j}\left[X(z)-X^*(z^*) \right]</math> | | |- ! [[Differentiation (calculus)|Differentiation]] in the z-domain | <math>n \, x[n]</math> | <math> -z \frac{dX(z)}{dz}</math> | <math>\begin{align} \mathcal{Z}\{n \, x(n)\} &= \sum_{n=-\infty}^{\infty} n \, x[n]z^{-n}\\ &= z \sum_{n=-\infty}^{\infty} n \, x[n]z^{-n-1}\\ &= -z \sum_{n=-\infty}^{\infty} x[n](-n \, z^{-n-1})\\ &= -z \sum_{n=-\infty}^{\infty} x[n]\frac{d}{dz}(z^{-n}) \\ &= -z \frac{dX(z)}{dz} \end{align} </math> | ROC, if <math>X(z)</math> is rational; ROC possibly excluding the boundary, if <math>X(z)</math> is irrational<ref name = forouzan>{{cite journal | journal = Electronics Letters| title = Region of convergence of derivative of Z transform | author = A. R. Forouzan | volume = 52 | issue = 8 | pages = 617β619 | year = 2016| doi = 10.1049/el.2016.0189| bibcode = 2016ElL....52..617F | s2cid = 124802942 }}</ref> |- ! [[Convolution]] | <math>x_1[n] * x_2[n]</math> | <math>X_1(z) \, X_2(z)</math> | <math>\begin{align} \mathcal{Z}\{x_1(n)*x_2(n)\} &= \mathcal{Z} \left \{\sum_{l=-\infty}^{\infty} x_1[l]x_2[n-l] \right \} \\ &= \sum_{n=-\infty}^{\infty} \left [\sum_{l=-\infty}^{\infty} x_1[l]x_2[n-l] \right ]z^{-n}\\ &=\sum_{l=-\infty}^{\infty} x_1[l] \left [\sum_{n=-\infty}^{\infty} x_2[n-l]z^{-n} \right ]\\ &= \left [\sum_{l=-\infty}^{\infty} x_1(l)z^{-l} \right ] \! \!\left [\sum_{n=-\infty}^{\infty} x_2[n]z^{-n} \right ] \\ &=X_1(z)X_2(z) \end{align} </math> | Contains ROC<sub>1</sub> β© ROC<sub>2</sub> |- ! [[Cross-correlation]] | <math>r_{x_1,x_2}=x_1^*[-n] * x_2[n]</math> | <math>R_{x_1,x_2}(z)=X_1^*(\tfrac{1}{z^*})X_2(z)</math> | | Contains the intersection of ROC of <math>X_1(\tfrac{1}{z^*})</math> and <math>X_2(z)</math> |- ! Accumulation |<math>\sum_{k=-\infty}^{n} x[k]</math> |<math> \frac{1}{1-z^{-1}}X(z)</math> |<math>\begin{align} \sum_{n=-\infty}^{\infty}\sum_{k=-\infty}^{n} x[k] z^{-n}&=\sum_{n=-\infty}^{\infty}(x[n]+\cdots)z^{-n}\\ &=X(z) \left (1+z^{-1}+z^{-2}+\cdots \right )\\ &=X(z) \sum_{j=0}^{\infty}z^{-j} \\ &=X(z) \frac{1}{1-z^{-1}}\end{align}</math> | |- ! [[Multiplication]] | <math>x_1[n] \, x_2[n]</math> | <math>\frac{1}{j2\pi}\oint_C X_1(v)X_2(\tfrac{z}{v})v^{-1}\mathrm{d}v</math> | | At least <math>r_{1l}r_{2l}<|z|<r_{1u}r_{2u}</math> |- |} '''[[Parseval's theorem]]''' :<math>\sum_{n=-\infty}^{\infty} x_1[n]x^*_2[n] \quad = \quad \frac{1}{j2\pi}\oint_C X_1(v)X^*_2(\tfrac{1}{v^*})v^{-1}\mathrm{d}v</math> '''[[Initial value theorem]]''': If <math>x[n]</math> is causal, then :<math>x[0]=\lim_{z\to \infty}X(z).</math> '''[[Final value theorem]]''': If the poles of <math>(z - 1) X(z)</math> are inside the unit circle, then :<math>x[\infty]=\lim_{z\to 1}(z-1)X(z).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Z-transform
(section)
Add topic