Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Spherical coordinate system
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Kinematics == In spherical coordinates, the position of a point or particle (although better written as a [[tuple|triple]]<math>(r,\theta, \varphi)</math>) can be written as<ref name="Cameron2019">{{Cite book |last=Reed |first=Bruce Cameron |url=https://www.worldcat.org/oclc/1104053368 |title=Keplerian ellipses : the physics of the gravitational two-body problem |date=2019 |others=Morgan & Claypool Publishers, Institute of Physics |isbn=978-1-64327-470-6 |location=San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, US) |oclc=1104053368}}</ref> <math display="block">\mathbf{r} = r \mathbf{\hat r} .</math> Its velocity is then<ref name="Cameron2019" /> <math display="block">\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \dot{r} \mathbf{\hat r} + r\,\dot\theta\,\hat{\boldsymbol\theta } + r\,\dot\varphi \sin\theta\,\mathbf{\hat{\boldsymbol\varphi}}</math> and its acceleration is<ref name="Cameron2019" /> <math display="block"> \begin{align} \mathbf{a} = {} & \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \\[1ex] = {} & \hphantom{+}\; \left( \ddot{r} - r\,\dot\theta^2 - r\,\dot\varphi^2\sin^2\theta \right)\mathbf{\hat r} \\ & {} + \left( r\,\ddot\theta + 2\dot{r}\,\dot\theta - r\,\dot\varphi^2\sin\theta\cos\theta \right) \hat{\boldsymbol\theta } \\ & {} + \left( r\ddot\varphi\,\sin\theta + 2\dot{r}\,\dot\varphi\,\sin\theta + 2 r\,\dot\theta\,\dot\varphi\,\cos\theta \right) \hat{\boldsymbol\varphi} \end{align} </math> The [[Angular_momentum#Orbital_angular_momentum_in_three_dimensions| angular momentum]] is <math display="block"> \mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{r} \times m\mathbf{v} = m r^2 \left(- \dot\varphi \sin\theta\,\mathbf{\hat{\boldsymbol\theta}} + \dot\theta\,\hat{\boldsymbol\varphi }\right) </math> Where <math>m</math> is mass. In the case of a constant {{mvar|Ο}} or else {{math|''ΞΈ'' {{=}} {{sfrac|{{pi}}|2}}}}, this reduces to [[Polar coordinate system#Vector calculus|vector calculus in polar coordinates]]. The corresponding [[Angular_momentum_operator#Orbital_angular_momentum_in_spherical_coordinates| angular momentum operator]] then follows from the phase-space reformulation of the above, <math display="block"> \mathbf{L}= -i\hbar ~\mathbf{r} \times \nabla =i \hbar \left(\frac{\hat{\boldsymbol{\theta}}}{\sin(\theta)} \frac{\partial}{\partial\phi} - \hat{\boldsymbol{\phi}} \frac{\partial}{\partial\theta}\right). </math> The torque is given as<ref name="Cameron2019" /> <math display="block"> \mathbf{\tau} = \frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \mathbf{r} \times \mathbf{F} = -m \left(2r\dot{r}\dot{\varphi}\sin\theta + r^2\ddot{\varphi}\sin{\theta} + 2r^2\dot{\theta}\dot{\varphi}\cos{\theta} \right)\hat{\boldsymbol\theta} + m \left(r^2\ddot{\theta} + 2r\dot{r}\dot{\theta} - r^2\dot{\varphi}^2\sin\theta\cos\theta \right) \hat{\boldsymbol\varphi} </math> The kinetic energy is given as<ref name="Cameron2019" /> <math display="block"> E_k = \frac{1}{2}m \left[ \left(\dot{r}\right)^2 + \left(r\dot{\theta}\right)^2 + \left(r\dot{\varphi}\sin\theta\right)^2 \right] </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Spherical coordinate system
(section)
Add topic